Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Chromatin Ip-Seq Central Nervous System Development

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Jumonji/ARID domain-containing protein 2 (JARID2) is a founding member of the JmjC-domain-containing protein family that is involved in regulation of histone methyltransferase activity (1,2). While many proteins in this family are protein demethylases, JARID2 lacks several conserved residues in the catalytic domain and does not exhibit protein demethylase activity (1,2). Research studies indicate that JARID2 is a nuclear protein that is highly expressed in poorly differentiated and actively dividing cells, with expression decreasing upon cellular differentiation (3,4). Expression of JARID2 protein is essential for embryonic development as the protein plays an important role in regulation of heart and liver development, neural tube fusion, and hematopoiesis (4). JARID2 is an accessory component of the polycomb repressor complex 2 (PRC2), which represses target gene expression through methylation of histone H3 at lysine 27 by EZH2 methyltransferase (5-10). JARID2 recruits the PRC2 complex to target genes and increases EZH2 methyltransferase activity by binding to nucleosomes and DNA (5-10). Additional studies show that loss of JARID2 expression results in decreased recruitment of PRC2, decreased methylation of histone H3 at lysine 27 at target genes, and delayed and incomplete differentiation of embryonic stem cells (5-10). Experimental knockdown of JARID2 in Xenopus laevis impairs the induction of gastrulation genes in blastula embryos and results in differentiation failure (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).