20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Immunoprecipitation Hydrolase Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Endogenous cannabinoids have been implicated in addictive behaviors and drug abuse (1). Fatty-acid amide hydrolase 1 (FAAH1) is a plasma membrane-bound hydrolase that converts oleamide to oleic acid (2). This hydrolase also converts the cannabinoid anandamide, the endogenous ligand for the CB1 cannabinoid receptor, to arachidonic acid, suggesting a role in fatty-acid amide inactivation (2). Mice lacking FAAH1 have significantly higher levels of anandamide in the brain and show decreased sensitivity to pain, further indicating a role for FAAH1 in the regulation of endocannabinoid signaling in vivo (3). FAAH1 null mice also demonstrate an increased preference for alcohol and an increased voluntary uptake of alcohol as compared to wild-type mice, indicating a role of FAAH1 in modulating addictive behaviors (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Endogenous cannabinoids have been implicated in addictive behaviors and drug abuse (1). Fatty-acid amide hydrolase 1 (FAAH1) is a plasma membrane-bound hydrolase that converts oleamide to oleic acid (2). This hydrolase also converts the cannabinoid anandamide, the endogenous ligand for the CB1 cannabinoid receptor, to arachidonic acid, suggesting a role in fatty-acid amide inactivation (2). Mice lacking FAAH1 have significantly higher levels of anandamide in the brain and show decreased sensitivity to pain, further indicating a role for FAAH1 in the regulation of endocannabinoid signaling in vivo (3). FAAH1 null mice also demonstrate an increased preference for alcohol and an increased voluntary uptake of alcohol as compared to wild-type mice, indicating a role of FAAH1 in modulating addictive behaviors (1).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Fatty acid synthase (FASN) catalyzes the synthesis of long-chain fatty acids from acetyl-CoA and malonyl-CoA. FASN is active as a homodimer with seven different catalytic activities and produces lipids in the liver for export to metabolically active tissues or storage in adipose tissue. In most other human tissues, FASN is minimally expressed since they rely on circulating fatty acids for new structural lipid synthesis (1).According to the research literature, increased expression of FASN has emerged as a phenotype common to most human carcinomas. For example in breast cancer, immunohistochemical staining showed that the levels of FASN are directly related to the size of breast tumors (2). Research studies also showed that FASN is highly expressed in lung and prostate cancers and that FASN expression is an indicator of poor prognosis in breast and prostate cancer (3-5). Furthermore, inhibition of FASN is selectively cytotoxic to human cancer cells (5). Thus, increased interest has focused on FASN as a potential target for the diagnosis and treatment of cancer as well as metabolic syndrome (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CHD8 belongs to the chromodomain helicase DNA-binding (CHD) family of ATP-dependent chromatin remodeling proteins (1). The CHD family of proteins has been shown to play an important role in regulating gene expression by utilizing the energy derived from ATP hydrolysis to alter chromatin architecture (1,2). The nine CHD family members are characterized by the presence of two tandem chromodomains in the N-terminal region and an SNF2-like ATPase domain near the central region of the protein (2-4). In addition, CHD8 contains three CR (conserved region) domains, a SANT (switching-defective protein 3, adaptor 2, nuclear receptor co-repressor, transcription factor IIB)-like domain, two BRK (brahma and kismet) domains, and a DNA-binding domain (2). The chromatin remodeling activity of CHD8 has been shown to be important for the regulation of a wide variety of genes, such as the HOX genes (5) and genes that are driven by β-catenin (6), p53 (7), estrogen receptor (8), or androgen receptor (9). CHD8 can also interact with the insulator binding protein CTCF and is required for CTCF insulator activity at multiple gene loci (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include acetylated p53 (2,3), p300 (4), Ku70 (5), forkhead (FoxO) transcription factors (5,6), PPARγ (7), and the PPARγ coactivator-1α (PGC-1α) protein (8). Deacetylation of p53 and FoxO transcription factors represses apoptosis and increases cell survival (2,3,5,6). Deacetylation of PPARγ and PGC-1α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (7,8). SirT1 deacetylase activity is inhibited by nicotinamide and activated by resveratrol. In addition, SirT1 activity may be regulated by phosphorylation, as it is phosphorylated at Ser27 and Ser47 in vivo; however, the function of these phosphorylation sites has not yet been determined (9).

$336
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: IHC-Leica® Bond™, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspases are a family of aspartate-specific cysteine-dependent proteases that play a critical role in apoptosis as well as inflammatory responses. Pro-inflammatory caspases include caspase-1 and mouse caspase-11 (1). Caspase-11 has about 60% and 55% identity to human caspases-4 and -5, respectively. Caspase-1 cleaves inflammatory cytokines such as pro-IL-1β and IL-18 into their mature forms (2). It is activated by proteolytic cleavage producing a tetramer of its two active subunits, p20 and p10. Canonical activation of caspase-1 occurs through several complex molecular platforms designated “inflammasomes” that include Pycard/Asc, nucleotide-binding oligomerization receptors (NLRs), and AIM2 (3, 4). Non-canonical activation of caspase-1 is triggered by caspase-11, which is transcriptionally induced by toll-like receptor ligands including LPS. Activation of this pathway induces inflammatory cytokines as well as pyroptosis, a form of programmed cell death (5-9). Pyroptosis may be specific for caspase-11, rather than caspase-1, suggesting a unique mechanism for protease.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The p53 tumor suppressor protein regulates the cellular response to multiple stresses, including DNA damage and oxidative stress. Activation of p53 can lead to cell cycle arrest and DNA repair, or apoptosis (1). Activated p53 transcription factor regulates the expression of multiple genes that regulate cell metabolism and the cell cycle. One p53-inducible gene is C12orf5, which encodes for a fructose-2,6-bisphosphatase known as TIGAR. TP53-inducible glycolysis and apoptosis regulator (TIGAR) protects cells from oxidative stress as it negatively regulates glycolysis and reduces the production of reactive oxygen species (ROS) in cells (2,3). Research studies demonstrate that knockdown of TIGAR expression induces autophagy and apoptosis (4,5), and its expression protects cells from ROS-related cell death (6,7). Additional studies show that TIGAR promotes cell cycle arrest and supports dephosphorylation of the retinoblastoma (Rb) protein (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: mRNA decapping is an important process in the mRNA turnover (1). DCP1A and DCP2 were identified as two human decapping enzymes and homologs of the better-characterized S. cerevisiae enzymes. Both putative decapping enzymes interact with the regulator of nonsense transcripts 1 (UPF1) and may be recruited by UPF1 or related proteins to mRNA sequences that contain premature termination codons (1). Additional research studies demonstrate that DCP1A, DCP1B (the homolog of DCP1A) and DCP2 colocalize with decapping activation factors RCK/p54 and Lsm proteins in cytoplasmic loci (2). DCP1A, DCP1B and DCP2 are components of cytoplasmic processing (P) bodies, with hyper-phosphorylation of DCP1A during mitosis suggesting a possible mechanism of P-body regulation during the cell cycle (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: PTPN22 (Lyp/PEP) is a cytoplasmic phosphatase expressed by hematopoietic cells (1,2). PTPN22 associates with the tyrosine kinase Csk to inhibit T cell receptor signaling through inactivation of Src kinases (3,4). Csk phosphorylates Src kinases on an inhibitory tyrosine, while PTPN22 dephosphorylates an activating site (4). PTPN22(-/-) mice have higher levels of activated Lck than wild-type, resulting in greater T cell expansion and increased serum antibody levels (5). Research studies have shown that a single-nucleotide polymorphism, 1858T of the PTPN22 gene which encodes the amino acid substitution R620W, confers increased risk for multiple autoimmune diseases including type I diabetes, rheumatoid arthritis, systemic lupus erythematosus, and Graves disease (6-9). Interestingly, although the R620W substitution disrupts the interaction between Csk and PTPN22, it is actually a gain-of-function mutation resulting in increased phosphatase activity (6,10,11). Recent evidence suggests that the autoimmune phenotype associated with the R620W variant is the result of increased calpain-mediated degradation and decreased protein levels of PTPN22 (12).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Kallikrein 3 (KLK3), also known as Prostate Specific Antigen (PSA), is a member of the glandular kallikrein subfamily of serine proteases (1). It is produced by prostate epithelial cells and is secreted into prostatic ducts. Upon cleavage of 7 amino-terminal amino acids (2), it is activated to liquefy semen in the seminal coagulum. Although PSA/KLK3 is produced in healthy individuals, investigators have found abnormally high levels in the blood of men with advanced prostate cancer (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Kallikrein 3 (KLK3), also known as Prostate Specific Antigen (PSA), is a member of the glandular kallikrein subfamily of serine proteases (1). It is produced by prostate epithelial cells and is secreted into prostatic ducts. Upon cleavage of 7 amino-terminal amino acids (2), it is activated to liquefy semen in the seminal coagulum. Although PSA/KLK3 is produced in healthy individuals, investigators have found abnormally high levels in the blood of men with advanced prostate cancer (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspase-1, or interleukin-1ß converting enzyme (ICE/ICEα), is a class I cysteine protease, which also includes caspases -4, -5, -11, and -12. Caspase-1 cleaves inflammatory cytokines such as pro-IL-1ß and interferon-γ inducing factor (IL-18) into their mature forms (1,2). Like other caspases, caspase-1 is proteolytically activated from a proenzyme to produce a tetramer of its two active subunits, p20 and p10. Caspase-1 has a large amino-terminal pro-domain that contains a caspase recruitment domain (CARD). Overexpression of caspase-1 can induce apoptosis (3). Mice deficient in caspase-1, however, have no overt defects in apoptosis but do have defects in the maturation of pro-IL-1β and are resistant to endotoxic shock (4,5). At least six caspase-1 isoforms have been identified, including caspase-1 α, β, γ, δ, ε and ζ (6). Most caspase-1 isoforms (α, β, γ and δ) produce products between 30-48 kDa and induce apoptosis upon over-expression. Caspase-1 ε typically contains only the p10 subunit, does not induce apoptosis and may act as a dominant negative. The widely expressed ζ isoform of caspase-1 induces apoptosis and lacks 39 amino-terminal residues found in the α isoform (6). Activation of caspase-1 occurs through an oligomerization molecular platform designated the "inflammasome" that includes caspase-5, Pycard/Asc, and NALP1 (7).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Apoptosis induced through the CD95 receptor (Fas/APO-1) and tumor necrosis factor receptor 1 (TNFR1) activates caspase-8 and leads to the release of the caspase-8 active fragments, p18 and p10 (1-3). Activated caspase-8 cleaves and activates downstream effector caspases such as caspase-1, -3, -6, and -7. Caspase-3 ultimately elicits the morphological hallmarks of apoptosis, including DNA fragmentation and cell shrinkage.

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Caspase-1, or interleukin-1ß converting enzyme (ICE/ICEα), is a class I cysteine protease, which also includes caspases -4, -5, -11, and -12. Caspase-1 cleaves inflammatory cytokines such as pro-IL-1ß and interferon-γ inducing factor (IL-18) into their mature forms (1,2). Like other caspases, caspase-1 is proteolytically activated from a proenzyme to produce a tetramer of its two active subunits, p20 and p10. Caspase-1 has a large amino-terminal pro-domain that contains a caspase recruitment domain (CARD). Overexpression of caspase-1 can induce apoptosis (3). Mice deficient in caspase-1, however, have no overt defects in apoptosis but do have defects in the maturation of pro-IL-1β and are resistant to endotoxic shock (4,5). At least six caspase-1 isoforms have been identified, including caspase-1 α, β, γ, δ, ε and ζ (6). Most caspase-1 isoforms (α, β, γ and δ) produce products between 30-48 kDa and induce apoptosis upon over-expression. Caspase-1 ε typically contains only the p10 subunit, does not induce apoptosis and may act as a dominant negative. The widely expressed ζ isoform of caspase-1 induces apoptosis and lacks 39 amino-terminal residues found in the α isoform (6). Activation of caspase-1 occurs through an oligomerization molecular platform designated the "inflammasome" that includes caspase-5, Pycard/Asc, and NALP1 (7).