20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Mononuclear Cell Proliferation

Also showing Monoclonal Antibody Negative Regulation of Mononuclear Cell Proliferation, Monoclonal Antibody Western Blotting Mononuclear Cell Proliferation

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The leukocyte Ig-like receptor subfamily B (LILRB) are type-I transmembrane glycoproteins containing ligand binding extracellular IgG-like domains and immunoreceptor tyrosine-based inhibition motifs (ITIMS) within the cytoplasmic domain, which recruit SHP protein tyrosine phosphatases, leading to transduction of signals that inhibit immune cell activation. Encoded within a region of chromosome 19 known as the leukocyte receptor complex, the LILRB subfamily of inhibitory receptors consists of LILRB1 to LILRB5, also referred to as CD85J, CD85D, CD85A, CD85K, and CD85C, respectively (1). There is mounting evidence that LILRBs function, in part, as a novel class of immune checkpoint receptors and support tumor growth through the transmission of inhibitory signals upon engagement of ligands expressed on tumor cells (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).