20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Multidrug Transport

Also showing Monoclonal Antibody Western Blotting Multidrug Transport

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The multidrug and toxin extrusion protein 1 (MATE1, SLC47A1) is a proton-coupled, organic cation antiporter located at the apical membrane of proximal kidney epithelial cells and the canalicular membrane of hepatocytes (1). MATE1 mediates the secretion of organic cations including drugs, toxins, and endogenous metabolites, into bile and urine (2,3). Substrates of MATE1 include multiple therapeutic agents, including metformin, cisplatin, acyclovir, and cephalexin (4,5). Polymorphisms in the corresponding SLC47A1 gene may affect the rate of renal clearance of certain cationic drugs, limiting the therapeutic benefits of these agents (6). Specifically, research studies demonstrate that SLC47A1 allelic variation correlates with differences in renal clearance rates of metformin (7), which may have an effect on the therapeutic impact of this drug in individuals diagnosed with type 2 diabetes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MDR1/ABCB1 belongs to the Mdr/Tap subfamily of the ATP-binding cassette transporter superfamily (1). Multidrug resistance 1 (MDR1) serves as an efflux pump for xenobiotic compounds with broad substrate specificity. MDR1 substrates include therapeutic agents such as actinomycin D, etoposide, imatinib, and doxorubicin, as well as endogenous molecules including β-amyloids, steroid hormones, lipids, phospholipids, cholesterol, and cytokines (2). Research studies have shown that MDR1 reduces drug accumulation in cancer cells, allowing the development of drug resistance (3-5). On the other hand, MDR1 expressed in the plasma membrane of cells in the blood-brain, blood-cerebral spinal fluid, or blood-placenta barriers restricts the permeability of drugs into these organs from the apical or serosal side (6,7). MDR1 is also expressed in normal tissues with excretory function such as small intestine, liver, and kidney (7). Intracellular MDR1 has been detected in the ER, vesicles, and nuclear envelope, and has been associated with cell trafficking machinery (8). Other reported functions of MDR1 include viral resistance, cytokine trafficking (9,10), and lipid homeostasis in the peripheral and central nervous system (11-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MDR1/ABCB1 belongs to the Mdr/Tap subfamily of the ATP-binding cassette transporter superfamily (1). Multidrug resistance 1 (MDR1) serves as an efflux pump for xenobiotic compounds with broad substrate specificity. MDR1 substrates include therapeutic agents such as actinomycin D, etoposide, imatinib, and doxorubicin, as well as endogenous molecules including β-amyloids, steroid hormones, lipids, phospholipids, cholesterol, and cytokines (2). Research studies have shown that MDR1 reduces drug accumulation in cancer cells, allowing the development of drug resistance (3-5). On the other hand, MDR1 expressed in the plasma membrane of cells in the blood-brain, blood-cerebral spinal fluid, or blood-placenta barriers restricts the permeability of drugs into these organs from the apical or serosal side (6,7). MDR1 is also expressed in normal tissues with excretory function such as small intestine, liver, and kidney (7). Intracellular MDR1 has been detected in the ER, vesicles, and nuclear envelope, and has been associated with cell trafficking machinery (8). Other reported functions of MDR1 include viral resistance, cytokine trafficking (9,10), and lipid homeostasis in the peripheral and central nervous system (11-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: MDR1/ABCB1 belongs to the Mdr/Tap subfamily of the ATP-binding cassette transporter superfamily (1). Multidrug resistance 1 (MDR1) serves as an efflux pump for xenobiotic compounds with broad substrate specificity. MDR1 substrates include therapeutic agents such as actinomycin D, etoposide, imatinib, and doxorubicin, as well as endogenous molecules including β-amyloids, steroid hormones, lipids, phospholipids, cholesterol, and cytokines (2). Research studies have shown that MDR1 reduces drug accumulation in cancer cells, allowing the development of drug resistance (3-5). On the other hand, MDR1 expressed in the plasma membrane of cells in the blood-brain, blood-cerebral spinal fluid, or blood-placenta barriers restricts the permeability of drugs into these organs from the apical or serosal side (6,7). MDR1 is also expressed in normal tissues with excretory function such as small intestine, liver, and kidney (7). Intracellular MDR1 has been detected in the ER, vesicles, and nuclear envelope, and has been associated with cell trafficking machinery (8). Other reported functions of MDR1 include viral resistance, cytokine trafficking (9,10), and lipid homeostasis in the peripheral and central nervous system (11-13).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ABCG2 (BCRP1/ABCP/MXR) is a member of the ATP-binding cassette transporter family that functions as ATP-dependent transporters for a wide variety of chemical compounds and are associated with drug-resistance in cancer cells (1-6). ABCG2 is a heavily glycosylated transmembrane protein with six transmembrane spanning regions consistent with it functioning as a half-transporter. The ABC family can exist as either full-length transporters or as half-transporters that form functional transporters through homo- or heterodimerization. High expression of ABCG2 was found in placenta as well as cell lines selected for resistance to a number of chemotherapeutic drugs, including mitoxantrone, doxorubicin, topotecan and flavopiridol. In rodents, the highest expression of ABCG2 was found in kidney (8). ABCG2 expression has also been observed in stem cell populations, particularly in hematopoietic and neuronal stem cells and is downregulated with differentiation (9-12).