Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Apolipoprotein Binding

Also showing Polyclonal Antibody Immunoprecipitation Apolipoprotein A-I Receptor Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Low density lipoprotein receptor related protein 1 ( LRP1) is a type I transmembrane receptor that mediates the endocytosis of various ligands (1). LRP1 plays important roles in lipid homeostasis, signaling transduction, embryonic development, and glucose metabolism (2-6). In addition, LRP1 regulates APP processing and facilitates the clearance of beta-amyloid (7-9). This finding makes LRP1 a potential therapeutic target for Alzheimer’s disease. LRP1 preprotein is proteolytically processed by furin to generate a 515 kDa extracellular α subunit and a membrane-anchored 85 kDa β subunit, which together form the mature receptor (10).

$122
20 µl
$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: LRP5 and LRP6 are single-pass transmembrane proteins belonging to the low-density lipoprotein receptor (LDLR)-related protein family. Unlike other members of the LDLR family, LRP5 and LRP6 have four EGF and three LDLR repeats in the extracellular domain, and proline-rich motifs in the cytoplasmic domain (1). They function as co-receptors for Wnt and are required for the canonical Wnt/β-catenin signaling pathway (2,3). LRP5 and LRP6 are highly homologous and have redundant roles during development (4,5). The activity of LRP5 and LRP6 can be inhibited by the binding of some members of the Dickkopf (DKK) family of proteins (6,7). Upon stimulation with Wnt, LRP6 is phosphorylated at multiple sites including Thr1479, Ser1490, and Thr1493 by kinases such as GSK-3 and CK1 (8-10). Phosphorylated LRP6 recruits axin to the membrane and presumably activates β-catenin signaling (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: ATP-binding cassette (ABC) proteins are membrane-residing transporters that transport substrates across the membrane in an ATP-dependent manner. ABC substrates subject to active transport across the membrane include ions, amino acids, lipids, and sterols (1). ATP-Binding cassette sub-family A member 7 (ABCA7) is a member of the ABC family and functions to regulate phospholipid and cholesterol homeostasis in central nervous system (CNS) as well as peripheral tissue. ABCA7, like most ABC transporters, contains two transmembrane domain bundles composed of six membrane-spanning helices and two nucleotide-binding domains. ABCA7 and its closest homolog, ABCA1, are 12A class members of ABCs and both proteins function to transport cholesterol and phospholipids in an apolipoprotein A (apoA) – dependent manner (2, 3). ABCA7 is expressed in a variety of tissue and exhibits neuronal and microglial enrichment in the CNS (4). Human genetic studies identified ABCA7 gene variants, including loss-of-function mutations, that associate with late-onset Alzheimer’s disease (AD) (5). ABCA7 dysfunction may contribute directly to AD pathogenesis by accelerating amyloid-β (Aβ) production and/or altering microglia-dependent phagocytosis of the Aβ (4, 6, 7).