20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Immunoprecipitation Negative Regulation of Hydrolase Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The ATPase inhibitor factor 1 (ATPIF1) gene encodes a mitochondrial ATPase inhibitor that limits ATP depletion when mitochondrial respiration is impaired (1). ATPIF1 becomes activated following a drop in pH, binding to β-F1-ATPase, thereby inhibiting the hydrolase activity of the H+-ATP synthase (1,2). In addition to its role as an ATP hydrolase, ATPIF1 has also been shown to play a regulatory role in cellular energy metabolism by triggering the induction of aerobic glycolysis in cancer cells resulting in their Warburg phenotype (3,4). Research studies demonstrate that the overexpression of ATPIF1 in several human carcinomas further supports its participation in oncogenesis and provides insight into the altered metabolism of cancer cells, which includes the reprogramming of energetic metabolism toward glycolysis (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Pig

Application Methods: Immunoprecipitation, Western Blotting

Background: Endothelial nitric-oxide synthase (eNOS) is an important enzyme in the cardiovascular system. It catalyzes the production of nitric oxide (NO), a key regulator of blood pressure, vascular remodeling, and angiogenesis (1,2). The activity of eNOS is regulated by phosphorylation at multiple sites. The two most thoroughly studied sites are the activation site Ser1177 and the inhibitory site Thr495 (3). Several protein kinases including Akt/PKB, PKA, and AMPK activate eNOS by phosphorylating Ser1177 in response to various stimuli (4,5). In contrast, bradykinin and H2O2 activate eNOS activity by promoting both Ser1177 phosphorylation and Thr495 dephosphorylation (6,7).