20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Receptor Activity

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Keratins (cytokeratins) are intermediate filament proteins that are mainly expressed in epithelial cells. Keratin heterodimers composed of an acidic keratin (or type I keratin, keratins 9 to 23) and a basic keratin (or type II keratin, keratins 1 to 8) assemble to form filaments (1,2). Keratin isoforms demonstrate tissue- and differentiation-specific profiles that make them useful as research biomarkers (1). Research studies have shown that mutations in keratin genes are associated with skin disorders, liver and pancreatic diseases, and inflammatory intestinal diseases (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Niemann-Pick C1-like 1 (NPC1L1) is a transmembrane protein that plays a critical role in cholesterol absorption (1). It is highly expressed in small intestine and localized along the brush border in both human and mouse epithelial cells (2,3). NPC1L1 mediates cholesterol uptake via vesicular endocytosis (4). Ezetimibe, a potent cholesterol absorption inhibitor used to treat hypercholesterolemia (5), inhibits cholesterol uptake by preventing NPC1L1 from incorporating into clathrin-coated vesicles (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The membrane protein syntaxin 5 (STX5) is a key component of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes that regulate cellular protein transport, vesicle docking, and membrane fusion (1). Syntaxin 5 protein is found as a 42 kDa ("long") protein localized to the Golgi complex and endoplasmic reticulum, and a “short” 35 kDa isoform localized primarily to the Golgi (2,3). Formation of the syntaxin 5 SNARE complex, which also includes proteins Sec22B, Bet1, GOSR1, GOSR2, and Ykt6, allows for regulation of ER-to-Golgi transport, intra-Golgi transport, and endosome-to-Golgi retrograde transport (4-6). Research studies indicate that the syntaxin 5 SNARE complex also plays an essential role in autophagy following autophagosome formation. Intracellular protein transport mediated by the syntaxin 5 complex is required for transport and localized activity of lysosomal proteases. The experimental reduction or deletion of syntaxin 5 complex components results in non-functional lysosomes and accumulation of autophagosomes (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PLXND1 (PlexinD1) is a type I transmembrane receptor for semaphorin (SEMA) family signaling molecules (1). PLXND1 has an extracellular SEMA binding domain, and a cytoplasmic tail containing RasGAP motifs and a RhoGTPase-binding domain. Upon ligand binding, PLXND1 undergoes conformational change and acquires GAP activity that inactivates downstream Rac/Ras signaling, leading to focal adhesion destabilization (2). The PLXND1 signaling pathway plays important roles in neuronal synapse formation, vascular branching, and thymocyte migration (2-4). Increased expression of PLXND1 is positively correlated with tumor stages in multiple cancer types (6). This is supported by gene knockdown experiments that suggest that SEMA/PLXND1 signaling may contribute metastatic progression (7-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD33, a type I transmembrane protein, is a sialic acid-binding Ig-like lectin (Siglec-3) of the Ig superfamily, and human CD33 binds preferentially to alpha-2, 6-linked sialic acid. Upon binding to its ligands CD33 transduces an inhibitory signaling through the immunoreceptor tyrosine-based inhibitory motif (ITIM) in its intracellular domain, inhibiting cellular function such as phagocytosis. In addition, CD33 is also involved in other processes, such as adhesion (1-3). Due to its exclusive expression on hematopoietic cells, particularly the myeloid lineage and their progenitors, CD33 has been actively pursued as a therapeutic target against acute myeloid leukemia (AML) (4,5). CD33 may also be involved in Alzheimer’s Disease (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Patched1 and 2 (PTCH1 and PTCH2) are twelve-pass transmembrane proteins that function as the receiving receptors for members of the Hedgehog family of proteins (1-4). In the absence of Hedgehog proteins, PTCH suppresses the otherwise constitutively active signaling receptor Smoothened (Smo) so that the Hedgehog signaling pathway is in the off state (5,6). Deactivating mutations that impair the ability of PTCH1 to suppress Smo are frequently found in patients with nevoid basal cell carcinoma syndrome (7,8). PTCH proteins have a sterol-sensing domain (SSD) also found in several proteins that function in cholesterol homeostasis, such as HMGCR (3-hydroxy-3-methylglutaryl coenzyme A-reductase) and SCAP (sterol regulatory element-binding protein-cleavage activating protein). However, the role of the SSD in Patched proteins is not clear (9,10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Patched1 and 2 (PTCH1 and PTCH2) are twelve-pass transmembrane proteins that function as the receiving receptors for members of the Hedgehog family of proteins (1-4). In the absence of Hedgehog proteins, PTCH suppresses the otherwise constitutively active signaling receptor Smoothened (Smo) so that the Hedgehog signaling pathway is in the off state (5,6). Deactivating mutations that impair the ability of PTCH1 to suppress Smo are frequently found in patients with nevoid basal cell carcinoma syndrome (7,8). PTCH proteins have a sterol-sensing domain (SSD) also found in several proteins that function in cholesterol homeostasis, such as HMGCR (3-hydroxy-3-methylglutaryl coenzyme A-reductase) and SCAP (sterol regulatory element-binding protein-cleavage activating protein). However, the role of the SSD in Patched proteins is not clear (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins having distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with extracellular environment (inside-out signaling) (1,2).The αVβ5 integrin is expressed in various tissues and cell types, including endothelia, epithelia and fibroblasts (4). It plays a role in matrix adhesion to VN, FN, SPARC and bone sialoprotein (5) and functions in the invasion of gliomas and metastatic carcinoma cells (6,7). αVβ5 integrin plays a major role in growth-factor-induced tumor angiogenesis, where cooperative signaling by the αVβ5 integrin and growth factors regulates endothelial cell proliferation and survival (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Vesicle-associated membrane protein 1 (VAMP1), also called synaptobrevin 1, is part of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex (1). The SNARE complex is involved in calcium regulated vesicular transport and membrane fusion (2). While related protein VAMP2 exhibits a wider distribution and is more abundant in the brain, VAMP1 is the main isoform in specific brain regions including the subthalamus nucleus zona incerta (1), the ostral periolivary region, and the retina (3). In addition, VAMP1 is involved in neurotransmitter release at the neuromuscular junction (4) and in the release of bioactive peptides from cardiac myocytes (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion by pairing of vesicular SNAREs (v-SNAREs) with cognate target SNAREs (t-SNAREs) (reviewed in 1,2). Vesicle associated membrane protein 3 (VAMP3), also known as cellubrevin, has a broad tissue distribution and localizes to endosomal compartments (3). VAMP3 interacts with the t-SNAREs syntaxin1, syntaxin4, SNAP23, and SNAP25 (4,5). Research studies indicate that VAMP3 is involved in transferrin receptor recycling to the plasma membrane (6) and in T-cell receptor recycling to immunological synapses (7). Inhibition of VAMP3 with tetanus toxin impairs membrane trafficking during cell migration (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: B cell maturation antigen (BCMA/TNFRSF17/CD269) is a transmembrane glycoprotein and member of the TNFR superfamily (1). BCMA expression is largely restricted to the B-cell lineage. Pro-survival signaling through this receptor plays a pivotal role in humoral immunity by regulating B-cell maturation and plasma cell differentiation upon binding its ligands, BAFF and APRIL (2-6). BCMA is expressed in a number B-cell malignancies and has garnered much attention as a novel therapeutic target for the treatment of multiple myeloma due to its selective and elevated expression on the cell surface of malignant plasma cells (7-10).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). Syntaxin 17/STX17 is a SNARE factor recruited to autophagosomes and required for autophagosome fusion to lysosomes. Syntaxin 17 interacts with SNAP29 (Qbc-SNARE synaptosome-associated protein 29) and the lysosomal factor VAMP8 (R-SNARE vesicle-associated membrane protein 8), as well as BRUCE, an inhibitor of apoptosis (IAP) protein, which is also involved in autophagosome/lysosome fusion (4,5).Syntaxin 17 promotes initiation of PINK1/Parkin-independent mitophagy, which is regulated by depletion of the mitochondrial outer membrane protein Fis1 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with extracellular environment (inside-out signaling) (1,2).Integrin β4 pairs with integrin α6 on the cell surface membrane to form the integrin α6β4 heterodimer, an important laminin receptor that is essential for hemidesmosome formation and the support of stable adhesions between basal epithelial cells and the basement membrane (4,5). Integrin β4 is an important component in several growth factor induced signaling pathways that are involved in tumorigenesis and invasive cell growth (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The tumor necrosis factor receptor family, which includes TNF-RI, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC), resulting in activation of caspases.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: The tumor necrosis factor receptor family, which includes TNF-RI, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC), resulting in activation of caspases.

$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Western Blotting

Background: Somatostatin receptors are part of the super family of G protein-coupled receptors. Five genes encoding six different somatostatin receptor subtypes (SSTR1, SSTR2A, SSTR2B, SSTR3, SSTR4, and SSTR5) have been cloned (1). Somatostatin receptors are activated by somatostatin, a neuropeptide that acts as a neurotransmitter in the brain that regulates hormone secretion from endocrine tissues (2). Somatostatin receptors are found to be highly expressed on human neuroendocrine tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: TNFRSF9 is a member of the tumor necrosis factor receptor superfamily (1, 2). It is also called 4-1BB or CD137 (1, 2). 4-1BB/CD137/TNFRSF9 is expressed in activated CD4+ and CD8+ T cells, natural killer cells and dendritic cells (2-5). The ligand 4-1BBL/CD137L/TNFSF9 on antigen presenting cells binds to 4-1BB/CD137/TNFRSF9 and costimulates the activation of T cells (5). The binding of agonistic antibodies to 4-1BB/CD137/TNFRSF9 also leads to costimulation for T cell activation (5). Studies have shown the effectiveness of targeting 4-1BB/CD137/TNFRSF9 by its agonistic antibodies in cancer immunotherapy (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: IFN-γ plays key roles in both the innate and adaptive immune response. IFN-γ activates the cytotoxic activity of innate immune cells, such as macrophages and NK cells (1,2). IFN-γ production by NK cells and antigen presenting cells (APCs) promotes cell-mediated adaptive immunity by inducing IFN-γ production by T lymphocytes, increasing class I and class II MHC expression, and enhancing peptide antigen presentation (1). The anti-viral activity of IFN-γ is due to its induction of PKR and other regulatory proteins. Binding of IFN-γ to the IFNGR1/IFNGR2 complex promotes dimerization of the receptor complexes to form the (IFNGR1/IFNGR2)2 -IFN-γ dimer. Binding induces a conformational change in receptor intracellular domains and signaling involves Jak1, Jak2, and Stat1 (3). The critical role of IFN-γ in amplification of immune surveillance and function is supported by increased susceptibility to pathogen infection by IFN-γ or IFNGR knockout mice and in humans with inactivating mutations in IFNGR1 or IFNGR2. IFN-γ also appears to have a role in atherosclerosis (4).