View Featured Offers >>
11962
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (APC Conjugate)
Antibody Conjugates
Monoclonal Antibody
R
Recombinant

Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (APC Conjugate) #11962

Citations (9)
Filter:
  1. F
Flow cytometric analysis of Jurkat cells, untreated (green) or treated with LY294002 #9901, Wortmannin #9951, and U0126 #9903 (blue), using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (APC Conjugate).

Supporting Data

REACTIVITY H M R Hm Mk Dm Z B
SENSITIVITY Endogenous
MW (kDa)
Source/Isotype Rabbit IgG

Application Key:

  • WB-Western Blot
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • C&R-CUT&RUN
  • C&T-CUT&Tag
  • DB-Dot Blot
  • eCLIP-eCLIP
  • IF-Immunofluorescence
  • F-Flow Cytometry

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Vir-Virus
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • GP-Guinea Pig
  • Rab-Rabbit
  • All-All Species Expected

Product Description

This Cell Signaling Technology antibody is conjugated to allophycocyanin (APC) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060.

Product Usage Information

Application Dilution
Flow Cytometry (Fixed/Permeabilized) 1:50

Storage

Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

Protocol

PRINT

View >Collapse >

Flow Cytometry, Methanol Permeabilization Protocol for Directly Conjugated Antibodies

A. Solutions and Reagents

All reagents required for this protocol may be efficiently purchased together in our Intracellular Flow Cytometry Kit (Methanol) #13593, or individually using the catalog numbers listed below.

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 1X Phosphate Buffered Saline (PBS): To prepare 1 L 1X PBS: add 100 ml 10X PBS (#12528) to 900 ml water mix.
  2. 4% Formaldehyde, Methanol-Free (#47746)
  3. 100% Methanol (#13604): Chill before use
  4. Antibody Dilution Buffer: Purchase ready-to-use Flow Cytometry Antibody Dilution Buffer (#13616), or prepare a 0.5% BSA PBS buffer by dissolving 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.

NOTE: When including fluorescent cellular dyes in your experiment (including viability dyes, DNA dyes, etc.), please refer to the dye product page for the recommended protocol. Visit www.cellsignal.com for a full listing of cellular dyes validated for use in flow cytometry.

B. Fixation

NOTE: Adherent cells or tissue should be dissociated and in single-cell suspension prior to fixation.

NOTE: Optimal centrifugation conditions will vary depending upon cell type and reagent volume. Generally, 150-300g for 1-5 minutes will be sufficient to pellet the cells.

NOTE: If using whole blood, lyse red blood cells and wash by centrifugation prior to fixation.

NOTE: Antibodies targeting CD markers or other extracellular proteins may be added prior to fixation if the epitope is disrupted by formaldehyde and/or methanol. The antibodies will remain bound to the target of interest during the fixation and permeabilization process. However, note that some fluorophores (including PE and APC) are damaged by methanol and thus should not be added prior to permeabilization. Conduct a small-scale experiment if you are unsure.

  1. Pellet cells by centrifugation and remove supernatant.
  2. Resuspend cells in approximately 100 µl 4% formaldehyde per 1 million cells. Mix well to dissociate pellet and prevent cross-linking of individual cells.
  3. Fix for 15 min at room temperature (20-25°C).
  4. Wash by centrifugation with excess 1X PBS. Discard supernatant in appropriate waste container. Resuspend cells in 0.5-1 ml 1X PBS. Proceed to Permeabilization step.
    1. Alternatively, cells may be stored overnight at 4°C in 1X PBS.

C. Permeabilization

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol.
  2. Permeabilize for a minimum of 10 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

NOTE: Count cells using a hemocytometer or alternative method.

  1. Aliquot desired number of cells into tubes or wells. (Generally, 5x105 to 1x106 cells per assay.)
  2. Wash cells by centrifugation in excess 1X PBS to remove methanol. Discard supernatant in appropriate waste container. Repeat if necessary.
  3. Resuspend cells in 100 µl of diluted primary antibody, prepared in Antibody Dilution Buffer at a recommended dilution or as determined via titration.
  4. Incubate for 1 hr at room temperature. Protect from light.
  5. Wash by centrifugation in Antibody Dilution Buffer or 1X PBS. Discard supernatant. Repeat.
  6. Resuspend cells in 200-500 µl of 1X PBS and analyze on flow cytometer.

posted July 2009

revised June 2020

Protocol Id: 407

Specificity / Sensitivity

Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (APC Conjugate) detects endogenous levels of Akt only when phosphorylated at Ser473.

Species Reactivity:

Human, Mouse, Rat, Hamster, Monkey, D. melanogaster, Zebrafish, Bovine

Species predicted to react based on 100% sequence homology:

Chicken, Xenopus, Dog, Pig

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser473 of human Akt protein.

Background

Akt, also referred to as PKB or Rac, plays a critical role in controlling cell survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3K/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin-dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

  1. Franke, T.F. et al. (1997) Cell 88, 435-7.
  2. Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.
  3. Franke, T.F. et al. (1995) Cell 81, 727-36.
  4. Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.
  5. Sarbassov, D.D. et al. (2005) Science 307, 1098-101.
  6. Jacinto, E. et al. (2006) Cell 127, 125-37.
  7. Cardone, M.H. et al. (1998) Science 282, 1318-21.
  8. Brunet, A. et al. (1999) Cell 96, 857-68.
  9. Zimmermann, S. and Moelling, K. (1999) Science 286, 1741-4.
  10. Cantley, L.C. and Neel, B.G. (1999) Proc Natl Acad Sci USA 96, 4240-5.
  11. Vlahos, C.J. et al. (1994) J Biol Chem 269, 5241-8.
  12. Hajduch, E. et al. (2001) FEBS Lett 492, 199-203.
  13. Cross, D.A. et al. (1995) Nature 378, 785-9.
  14. Diehl, J.A. et al. (1998) Genes Dev 12, 3499-511.
  15. Gesbert, F. et al. (2000) J Biol Chem 275, 39223-30.
  16. Zhou, B.P. et al. (2001) Nat Cell Biol 3, 245-52.
  17. Navé, B.T. et al. (1999) Biochem J 344 Pt 2, 427-31.
  18. Inoki, K. et al. (2002) Nat Cell Biol 4, 648-57.
  19. Manning, B.D. et al. (2002) Mol Cell 10, 151-62.

Pathways

Explore pathways related to this product.

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not for Use in Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.