Buy 3 and get the 4th FREE!* | Learn More >>
7872
PathScan® Total Chk1 Sandwich ELISA Kit
ELISA Kits

PathScan® Total Chk1 Sandwich ELISA Kit #7872

Reviews ()
Citations (0)
To Purchase # 7872

Important Ordering Details

Custom Ordering Details: When ordering five or more kits, please contact us for processing time and pricing at sales@cellsignal.com.

Supporting Data

REACTIVITY

Application Key:

  • W-Western
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • IF-Immunofluorescence
  • F-Flow Cytometry
  • E-P-ELISA-Peptide

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • All-All Species Expected

Product Description

The PathScan® Total Chk1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Chk1. A Chk1 Mouse Antibody has been coated onto the microwells. After incubation with cell lysates, Chk1 (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a Chk1 Rabbit Detection Antibody is added to the captured phospho and nonphospho Chk1 protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total Chk1.

Antibodies in kit are custom formulations specific to kit.

Specificity / Sensitivity

CST's PathScan® Chk1 Sandwich ELISA Kit #7872 detects endogenous levels of total Chk1 protein. As shown in Figure 1, a significant induction of Chk1 phosphorylation at Ser317 can be detected in HeLa cells following treatment with UV using the Phospho-Chk1 (Ser317) Sandwich ELISA Kit #7870. The levels of total Chk1 (phospho and nonphospho) remain unchanged as shown by Western analysis and by PathScan® Total Chk1 Sandwich ELISA Kit #7872 (Figure 1). This kit detects proteins from the indicated species, as determined through in-house testing, but may also detect homologous proteins from other species.

Background

Chk1 kinase acts downstream of ATM/ATR kinase and plays an important role in DNA damage checkpoint control, embryonic development, and tumor suppression (1). Activation of Chk1 involves phosphorylation at Ser317 and Ser345 by ATM/ATR, followed by autophosphorylation of Ser296. Activation occurs in response to blocked DNA replication and certain forms of genotoxic stress (2). While phosphorylation at Ser345 serves to localize Chk1 to the nucleus following checkpoint activation (3), phosphorylation at Ser317 along with site-specific phosphorylation of PTEN allows for re-entry into the cell cycle following stalled DNA replication (4). Chk1 exerts its checkpoint mechanism on the cell cycle, in part, by regulating the cdc25 family of phosphatases. Chk1 phosphorylation of cdc25A targets it for proteolysis and inhibits its activity through 14-3-3 binding (5). Activated Chk1 can inactivate cdc25C via phosphorylation at Ser216, blocking the activation of cdc2 and transition into mitosis (6). Centrosomal Chk1 has been shown to phosphorylate cdc25B and inhibit its activation of CDK1-cyclin B1, thereby abrogating mitotic spindle formation and chromatin condensation (7). Furthermore, Chk1 plays a role in spindle checkpoint function through regulation of aurora B and BubR1 (8). Research studies have implicated Chk1 as a drug target for cancer therapy as its inhibition leads to cell death in many cancer cell lines (9).

  1. Liu, Q. et al. (2000) Genes Dev 14, 1448-59.
  2. Zhao, H. and Piwnica-Worms, H. (2001) Mol Cell Biol 21, 4129-39.
  3. Jiang, K. et al. (2003) J Biol Chem 278, 25207-17.
  4. Martin, S.A. and Ouchi, T. (2008) Mol Cancer Ther 7, 2509-16.
  5. Chen, M.S. et al. (2003) Mol Cell Biol 23, 7488-97.
  6. Zeng, Y. et al. (1998) Nature 395, 507-10.
  7. Löffler, H. et al. (2006) Cell Cycle 5, 2543-7.
  8. Zachos, G. et al. (2007) Dev Cell 12, 247-60.
  9. Garber, K. (2005) J Natl Cancer Inst 97, 1026-8.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
PathScan is a trademark of Cell Signaling Technology, Inc.