Buy 3 and get the 4th FREE!* | Learn More >>
1437
Phospho-NF-κB p65 (Ser276) Blocking Peptide
Experimental Controls

Phospho-NF-κB p65 (Ser276) Blocking Peptide #1437

Reviews ()
Citations (0)

Immunohistochemical analysis of paraffin-embedded human breast carcinoma using Phospho-NF-κB p65 (Ser276) Antibody #3037 in the presence of control peptide (left) or Phospho-NF-κB p65 (Ser276) Blocking Peptide (right).

Product Usage Information

For immunohistochemistry, add twice the volume of peptide as volume of antibody used in 100 µl total volume. Incubate for a minimum of 30 minutes prior to adding the entire volume to the slide. Recommended antibody dilutions can be found on the relevant product data sheet.

Storage:

Supplied in 20 mM potassium phosphate (pH 7.0), 50 mM NaCl, 0.1 mM EDTA, 1 mg/ml BSA and 5% glycerol. Store at –20°C.

Product Description

This peptide is used to block Phospho-NF-κB p65 (Ser276) Antibody #3037 reactivity in immunohistochemistry and Western blot protocols.

Quality Control

The quality of the peptide was evaluated by reversed-phase HPLC and by mass spectrometry. The peptide blocks Phospho-NF-κB p65 (Ser276) Antibody #3037 by immunohistochemistry and Western blotting.

Background

Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

  1. Baeuerle, P.A. and Henkel, T. (1994) Annu Rev Immunol 12, 141-79.
  2. Baeuerle, P.A. and Baltimore, D. (1996) Cell 87, 13-20.
  3. Haskill, S. et al. (1991) Cell 65, 1281-9.
  4. Thompson, J.E. et al. (1995) Cell 80, 573-82.
  5. Whiteside, S.T. et al. (1997) EMBO J 16, 1413-26.
  6. Traenckner, E.B. et al. (1995) EMBO J 14, 2876-83.
  7. Scherer, D.C. et al. (1995) Proc Natl Acad Sci USA 92, 11259-63.
  8. Chen, Z.J. et al. (1996) Cell 84, 853-62.
  9. Senftleben, U. et al. (2001) Science 293, 1495-9.
  10. Coope, H.J. et al. (2002) EMBO J 21, 5375-85.
  11. Xiao, G. et al. (2001) Mol Cell 7, 401-9.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

To Purchase # 1437