Render Target: STATIC
Render Timestamp: 2024-10-24T10:23:43.668Z
Commit: 56767fe525c928647c8401233a175d0d607d385d
XML generation date: 2024-08-01 15:25:25.460
Product last modified at: 2024-08-19T12:00:17.619Z
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

DAPK1 Antibody #3008

Filter:
  • WB

    Supporting Data

    REACTIVITY H M
    SENSITIVITY Endogenous
    MW (kDa) 160
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    DAPK1 Antibody detects endogenous levels of total DAPK1 protein.

    Species Reactivity:

    Human, Mouse

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Rat, Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly903 of human DAPK1. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    Death-associated protein kinase (DAPK1) is a Ca2+/calmodulin-regulated serine/threonine kinase that participates in a wide range of apoptotic signals including interferon-γ, tumor necrosis factor α, Fas, activated c-Myc, and detachment from the extracellular matrix. In addition to the kinase domain and calmodulin regulatory segment, DAPK1 also has eight ankyrin repeats, a cytoskeleton binding region, and a conserved death domain (1-3). Deletion of the calmodulin-regulatory domain generates a constitutively active mutant kinase. Ectopic expression of wild-type DAPK1 induced cell death in HeLa cells. Conversely, expression of a catalytically inactive mutant protected cells from interferon-γ-induced cell death (4). The catalytic domain of DAPK1 has very high sequence similarity to vertebrate myosin light chain kinase (MLCK) and a RXX(S/T)X motif derived from myosin light chain protein was shown to be phosphorylated in vitro by DAPK1 (5).
    Epigenetic silencing of DAPK1 by promoter methylation has been observed in cases of chronic lymphocytic leukemia (6,7).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.