View Featured Offers >>
37739
N1-Methyladenosine (m1A) (E8S7H) Rabbit mAb
Primary Antibodies
Monoclonal Antibody
R
Recombinant

N1-Methyladenosine (m1A) (E8S7H) Rabbit mAb #37739

Citations (0)
Filter:
  1. DB
Total RNA purified from 293T cell extracts, either transfected with control siRNA (-) or transfected with TRMT6 siRNA (+), were blotted onto a nylon membrane, UV cross-linked, and probed with N1-Methyladenosine (m1A) (E8S7H) Rabbit mAb (upper) or N6-Methyladenosine (m6A) (D9D9W) Rabbit mAb #56593 (lower). As expected, there is less m1A present in the sample transfected with TRMT6 siRNA.
Specificity of N1-Methyladenosine (m1A) (E8S7H) Rabbit mAb was determined by ELISA. The antibody was titrated against an RNA oligo containing either unmodified adenosine or N1-methylated adenosine (m1A). As shown in the graph, the antibody only binds to N1-methylated adenosine (m1A).
Specificity of N1-Methyladenosine (m1A) (E8S7H) Rabbit mAb was determined by competitive ELISA. The graph depicts the binding of the antibody to a pre-coated m1A oligonucleotide in the presence of increasing concentrations of differentially modified adenosine. As shown in the graph, antibody binding is only blocked by free m1A nucleoside.
To Purchase # 37739
Cat. # Size Qty. Price
37739S
100 µl

Supporting Data

REACTIVITY All
SENSITIVITY Endogenous
MW (kDa)
Source/Isotype Rabbit IgG

Application Key:

  • WB-Western Blot
  • IP-Immunoprecipitation
  • IHC-Immunohistochemistry
  • ChIP-Chromatin Immunoprecipitation
  • C&R-CUT&RUN
  • C&T-CUT&Tag
  • DB-Dot Blot
  • eCLIP-eCLIP
  • IF-Immunofluorescence
  • F-Flow Cytometry

Species Cross-Reactivity Key:

  • H-Human
  • M-Mouse
  • R-Rat
  • Hm-Hamster
  • Mk-Monkey
  • Vir-Virus
  • Mi-Mink
  • C-Chicken
  • Dm-D. melanogaster
  • X-Xenopus
  • Z-Zebrafish
  • B-Bovine
  • Dg-Dog
  • Pg-Pig
  • Sc-S. cerevisiae
  • Ce-C. elegans
  • Hr-Horse
  • GP-Guinea Pig
  • Rab-Rabbit
  • All-All Species Expected

Product Usage Information

Application Dilution
RNA Dot Blot 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

PRINT

View >Collapse >

RNA Dot Blot Protocol

A. Buffers and Reagents

  1. 20X Saline Sodium Citrate (SSC) Buffer: 3.0 M NaCl, 0.3 M Sodium Citrate, pH to 7.0.
  2. 10X SSC Buffer: Dilute 20X SSC buffer 1:2.
  3. 4X RNA Denaturing Buffer: 16.4 M Formamide, 2.8 M Formaldehyde, 26.6 mM MOPS Buffer (6.7 mM Sodium Acetate, 1.3 mM EDTA, 1.3 mM EGTA).
  4. Nuclease-Free Water: (#12931)
  5. Blotting Membrane: This protocol has been optimized for positively charged nylon membranes.
  6. 96-Well Dot Blot Apparatus
  7. 10X Tris Buffered Saline with Tween® 20 (TBST): (#9997) To prepare 1 L 1X TBST: add 100 ml 10X TBST to 900 ml dH2O, mix.
  8. Nonfat Dry Milk: (#9999)
  9. Blocking Buffer: 1X TBST with 5% w/v nonfat dry milk; for 150 ml, add 7.5 g nonfat dry milk to 150 ml 1X TBST and mix well.
  10. Bovine Serum Albumin (BSA): (#9998)
  11. Primary Antibody Dilution Buffer: 1X TBST with 5% BSA; for 20 ml, add 1.0 g BSA to 20 ml 1X TBST and mix well.
  12. Secondary Antibody Conjugated to HRP: anti-rabbit (#7074); anti-mouse (#7076).
  13. Detection Reagent LumiGLO® chemiluminescent reagent and peroxide (#7003) or SignalFire™ ECL Reagent (#6883)

B. Dot Blot

Note: This protocol is written for spotting either purified total RNA or poly A-purified mRNA (titration of 2 μg, 1 μg, 500 ng, 250 ng, 125 ng, 62.5 ng, and 31.25 ng) onto a positively charged nylon membrane using a 96-well dot blotting apparatus. Depending on the source of the RNA, more or less RNA may be required for detection with the antibody.

Before Starting:
• RNA is sensitive to degradation by RNases, which can affect sample integrity. It is recommended that all surfaces and equipment undergo RNase decontamination.
• Purify total RNA and/or mRNA from cell pellet using an RNA isolation kit. Assess total RNA quality by gel electrophoresis on a 1% agarose gel. The 28S and 18S RNA should present as distinct bands. Smearing indicates RNA degradation. See Figure 1.
• Cut a piece of nylon membrane to fit the size of the dot blot manifold.
• Wet nylon membrane with 10X SSC Buffer.
• Dry membrane by placing it in a 96-well dot blot apparatus and applying vacuum.

  1. Dilute RNA to 160 ng/μl in 50 μl of nuclease free water. Denature RNA by adding 16.5 μl of 4X RNA Denaturing Buffer and incubate at 65° C for 5 min.
  2. Add 66.5 μl of 20X SSC buffer and immediately chill on ice for 5 min.
  3. Add 67 μl of nuclease-free water to bring DNA solution to a final volume of 200 μl with a RNA concentration of 40 ng/μl.
  4. Set up a series of six, 2-fold dilutions by adding equal volume of the RNA solution, starting with the RNA solution in Step 3, to nuclease-free water. This will generate seven RNA samples with concentrations of 40, 20, 10, 5, 2.5, 1.25, and 0.625 ng/μl.
  5. Apply 50 μl of each of the seven dilution samples into separate wells of the 96-well dot blot apparatus, leaving the last well for nuclease-free water only. The amount of RNA added to each well should then be 2 μg, 1 μg, 500 ng, 250 ng, 125 ng, 62.5 ng, 31.25 ng, and 0 ng respectively. Apply gentle vacuum pressure to draw solution through the membrane. Nylon membrane should be mostly dry before Step 6.
  6. Remove nylon membrane from the 96-well dot blot apparatus and wrap in plastic wrap.
  7. UV cross-link nylon membrane at 1200 J/m2.
  8. Repeat Step 7 for a second round of UV cross-linking.

C. Membrane Blocking and Antibody Incubation

Optional: To normalize sample loading using methylene blue, apply stain before Section C, Step 1 and capture an image. Rinse blots three times for 5 min each with 15 mL dH2O. Stain does not affect antibody binding or detection.

  1. Incubate membrane in 25 ml of blocking buffer with gentle agitation for 1 hr at room temperature.
  2. Wash membrane three times for 5 min each with 15 ml of 1X TBST.
  3. Incubate membrane and primary antibody (at the appropriate dilution and diluent as recommended in the antibody product datasheet) in 10 ml primary antibody dilution buffer, with gentle agitation overnight at 4°C.
  4. Wash three times for 5 min each with 15 ml of 1X TBST.
  5. Incubate membrane with the species appropriate HRP-conjugated secondary antibody (#7074 Anti-rabbit IgG, HRP-linked Antibody or #7076 Anti-mouse IgG, HRP-linked Antibody) at 1:2000 in 10 ml of blocking buffer with gentle agitation for 1 hr at room temperature.
  6. Wash membrane three times for 5 min each with 15 ml of 1X TBST.
  7. Proceed with detection (Section D)

D. Detection of RNA

  1. Incubate membrane with 10 ml of LumiGLO® (0.5 ml 20X LumiGLO® #7003, 0.5 ml 20X Peroxide and 9.0 ml purified water) or 10 ml SignalFire™ #6883 (5 ml Reagent A, 5 ml Reagent B) with gentle agitation for 1 min at room temperature.
  2. Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap, and capture images using a chemiluminescent-sensitive detection method (film exposure or digital imager).

NOTE: Due to the kinetics of the detection reaction, signal is most intense immediately following incubation and declines over the following 2 hr.

Figure 1. Representative image of isolated, intact total RN

Figure 1. Representative image of isolated, intact total RNA. 28S and 18S RNA should migrate as distinct bands. If RNA presents as a smear, the sample may be degraded and unfit to use in downstream assays. Lane 1 is NEB 100 bp DNA ladder and lane 2 is total RNA isolated from 293T cells.


posted November 2018

Protocol Id: 1784

Specificity / Sensitivity

N1-Methyladenosine (m1A) (E8S7H) Rabbit mAb recognizes endogenous levels of N1-methyladenosine (m1A) protein. This antibody has been validated using ELISA and dot blot assays and shows high specificity for m1A. This antibody does not cross-react with unmodified adenosine, N6-methyladenosine, or 2'-O-methyladenosine.

Species Reactivity:

All Species Expected

Source / Purification

Monoclonal antibody is produced by immunizing animals with N1-methyladenosine protein.

Background

N1-methyladenosine (m1A) is a post-transcriptional modification found in various RNA subtypes. Even though m1A was first isolated in the 1960s, lack of tools and reagents have made interrogating the epitranscriptomic landscape challenging (1,2). Most tRNAs are modified at the A58 position, which is conserved across species. Methylation at the N1 position of A58 confers a positive charge at the elbow region of the tRNA tertiary structure and does so without disrupting hydrogen bond interactions, ultimately stabilizing it (3). The enzyme complex responsible for deposition of the m1A mark on tRNA is conserved from yeast to humans. It consists of the enzymatic protein TRM61 and the substrate recognition protein TRM6 (4,5) N1-methyladenosine is also found on rRNA, and is deposited by Rrp8 in yeast and NML in mammals (6,7). The 28S rRNA undergoes methylation at position 645 in Helix 25.1, promoting 60S subunit formation (6). In mRNA, m1A modification is also present, but the relative abundance is still being quantified through various sequencing techniques (8-10). It seems most mRNA m1A sites are catalyzed by TRM6/61 and results in transcriptional repression due to the disruption of base pairing (9).

m1A, much like m6A, can be erased by various enzymes. ALKBH1 has been shown to erase the m1A mark on tRNAs, resulting in reduced translational initiation, which responds to the availability of glucose (11). ALKBH3 has also been shown to erase m1A marks from mRNA transcripts (8).

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not for Use in Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.