Cell Signaling Technology Logo - Extra Large

PTMScan® Phospho-Akt Substrate (RXRXXS*/T*) Motif Monoclonal Antibody 2 Kit #5563

Additional Information

This product is intended for peptide enrichment and mass spectrometry analysis. To learn more about our Proteomics Kits and Services please answer a few questions for our Proteomics group.

Contact the CST Proteomics Group

    Product Information

    Product Usage Information

    Cells are lysed in a urea-containing buffer, cellular proteins are digested by proteases, and the resulting peptides are purified by reversed-phase, solid-phase extraction. Peptides are then subjected to immunoaffinity purification using a PTMScan® Motif antibody conjugated to protein A agarose beads. Unbound peptides are removed through washing, and the captured PTM-containing peptides are eluted with dilute acid. Reversed-phase purification is performed on microtips to desalt and separate peptides from antibody prior to concentrating the enriched peptides for LC-MS/MS analysis. CST recommends the use of PTMScan® IAP Buffer #9993 included in the kit.

    Storage

    Antibody beads supplied in IAP buffer containing 50% glycerol. Store at -20°C. Do not aliquot the antibody.

    Protocol

    Product Description

    PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.

    Background

    Akt plays a central role in mediating critical cellular responses including cell growth and survival, angiogenesis, and transcriptional regulation (2-4). It is a member of an important class of kinases, referred to as Arg-directed kinases or AGC-family kinases, which includes cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), protein kinase C, Akt, p70S6 kinase, and RSK. These kinases share a substrate specificity characterized by Arg at position -3 relative to the phosphorylated Ser or Thr (5,6). Akt, p70 S6 kinase, and RSK additionally share specificity for Arg at position -5 (recognition sequence RXRXXS/T) (7) In a recent phosphoproteomic study (8) co-authored by scientists in the CST Site DiscoveryGroup over 300 downstream substrates for AGC family kinases recognizing the RXRXXS/T motif were identified with PhosphoScan Technology using Phospho-Akt substrate antibodies. These CST™ antibodies are powerful tools for investigating the regulation of phosphorylation by Akt and other Arg-directed kinases, as well as for high throughput kinase drug discovery.In this assay, PTMScan® (RXRXXS

    Alternate Names

    Akt; akt1; akt2; akt3; motif

    For Research Use Only. Not for Use in Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    AcetylScan is a registered trademark of Cell Signaling Technology, Inc.
    MethylScan is a registered trademark of Cell Signaling Technology, Inc.
    NAThis product is supplied and sold under certain patents owned by Active Motif, US patents 9938524, 10689643, 11306307 and 12049622, and related patents in other countries, for purchaser’s internal research only, and may not be used for any commercial purpose, including the provision of services.
    PTMScan is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.