20% off purchase of 3 or more products* | Learn More >>

Antibody Sampler Kit Astrocyte Differentiation

The Notch Activated Targets Antibody Sampler Kit provides an economical means of detecting target proteins of activated Notch. The kit contains enough primary antibody to perform four western blot experiments per primary antibody.
Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides an economical means of detecting multiple components of the SASP. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2). The composition of the SASP varies, and SASP components can be either beneficial or deleterious in human disease, depending on the context (3).Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides a collection of antibodies to various SASP components, including TNF-alpha, interleukin-6 (IL-6), the multifunctional cytokine IL-1beta, the chemokines CXCL10, RANTES/CCL5 and MCP-1, the matrix metalloprotease MMP3, and the serine-protease inhibitor PAI-1.

The ALK Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the ALK pathway, including phosphorylated ALK, Jak2, Jak3, Stat3, Stat5, PLCγ1, Akt, Src, and p44/42 MAPK. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

The Phospho-Stat Pathway Sampler Kit provides an economical means to evaluate the activation status of Stat molecules, including the phosphorylation of Stat1 at Tyr701, Stat2 at Tyr690, Stat3 at Tyr705/Ser727, Stat5 at Tyr694 and Stat6 at Tyr641. The kit includes enough primary and secondary antibody to perform two Western blot experiments.

Background: Jaks (Janus Kinases) and Stats (Signal Transducers and Activators of Transcription) are utilized by receptors for a wide variety of ligands including cytokines, hormones, growth factors and neurotransmitters. Jaks, activated via autophosphorylation following ligand-induced receptor aggregation, phosphorylate tyrosine residues on associated receptors, Stat molecules and other downstream signaling proteins (1,2). The phosphorylation of Stat proteins at conserved tyrosine residues activates SH2-mediated dimerization followed rapidly by nuclear translocation. Stat dimers bind to IRE (interferon response element) and GAS (gamma interferon-activated sequence) DNA elements, resulting in the transcriptional regulation of downstream genes (1,2). The remarkable range and specificity of responses regulated by the Stats is determined in part by the tissue-specific expression of different cytokine receptors, Jaks and Stats (2,3), and by the combinatorial coupling of various Stat members to different receptors. Serine phosphorylation in the carboxy-terminal transcriptional activation domain has been shown to regulate the function of Stat1, -2, -3, -4 and -5 (1). Phosphorylation of Stat3 at Ser727 via MAPK or mTOR pathways is required for optimal transcriptional activation in response to growth factors and cytokines including IFN-gamma and CNTF (4,5). Jak/Stat pathways also play important roles in oncogenesis, tumor progression, angiogenesis, cell motility, immune responses and stem cell differentiation (6-11).

The Inflammasome Antibody Sampler Kit provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Pyroptosis Antibody Sampler Kit provides an economical means of detecting proteins that are used as readouts for pyroptosis. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.

Background: Pyroptosis is a regulated pathway of cell death with morphological features of necrosis, including cell swelling, plasma membrane pore formation, and engagement of an inflammatory response with the release of a number of damage-associated molecular patterns (DAMPs) such as HMGB1 and inflammatory cytokines like IL-1β and IL-18 (1,2). Pyroptosis is generally induced in cells of the innate immune system, such as monocytes, marcrophages, and dendritic cells in the presence of pathogen-associated molecular patterns (PAMPs) expressed on microbial pathogens or by cell-derived DAMPs. It is induced through assembly of inflammasomes triggering proteolytic activation of caspase-1 which then cleaves inflammatory cytokines like IL-1β and IL-18 to their mature forms (3). A critical feature of pyroptosis is the cleavage of Gasdermin D by caspase-1 and mouse caspase-11 (or human caspase-4/5) (4-6). Upon cleavage the N-terminal fragment of Gasdermin D oligomerizes to form a pore allowing secretion of inflammatory DAMPs and cytokines. Canonical inflammasome assembly typically consists of a cytosolic-pattern recognition receptor (PPR; a nucleotide binding domain and leucine-rich repeat [NLR] or AIM2-like family members), an adaptor protein (ASC/TMS1), and pro-caspase-1. Distinct inflammasome complexes can recognize distinct PAMPs and DAMPs to trigger pyroptosis. The best characterized pathway triggered by the NLR, NLRP3, occurs through a two-step process. The first step is a priming signal, NF-κB is activated to induce the expression of a number of inflammasome components including NLRP3, pro-IL-1β, and pro-IL-18. In the second activation step, caspase-1 is activated and Gasdermin D and cytokines are proteolytically activated. In a non-canonical pathway, caspase-4 and caspase-5 can directly trigger Gasdermin D cleavage in monocytes following LPS stimulation (5,7).

The Innate Immunity Activation Antibody Sampler Kit provides an economical means of detecting the activation of multiple signaling pathways involved in innate immunity using phospho-specific, cleavage-specific, and control antibodies. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system responds rapidly to pathogens by detecting conserved pathogen-associated molecular patterns (PAMPs) and damage/danger-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). There are several families of PRRs. Toll-like receptors (TLRs) are transmembrane PRRs and signal through recruitment of adaptor proteins, including MyD88, which leads to recruitment and phosphorylation of IRAK1 and IRAK4, followed by activation of NF-κB and MAP kinases (1-3). Some TLRs also activate IRFs, which upregulate the type I interferon response. Activation of TLR3 and TLR4 results in phosphorylation and activation of IRF-3, while TLR7, TLR8, and TLR9 lead to activation of IRF-7 (2, 3). STING is a multi-pass ER transmembrane protein that is activated in response to intracellular DNA downstream of DNA-sensing cytoplasmic PRRs, such as DDX41, or by binding the second messenger cyclic-GMP-AMP (cGAMP) produced by cGAS (4-6). Following activation, STING translocates with TBK1 to perinuclear endosomes, leading to phosphorylation and activation of IRF-3 and NF-κB (7, 8). Following activation and translocation, STING gets phosphorylated by ULK1, resulting in STING inactivation and degradation (9). Inflammasomes are cytoplasmic multimeric protein complexes that assemble in response to PAMPs or DAMPs detected by AIM2 or members of the nod-like receptor (NLR) family, such as NLRP3 (10). Inflammasomes activate Caspase-1, which cleaves the IL-1β and IL-18 precursor proteins into the mature forms (10).

Stat Antibody Sampler Kit II provides an economical means to examine the complete Stat family: Stat1-6. The kit contains enough a primary antibody to perform two western blot experiments with each primary antibody.

Background: Jaks (Janus Kinases) and Stats (Signal Transducers and Activators of Transcription) are utilized by receptors for a wide variety of ligands including cytokines, hormones, growth factors and neurotransmitters. Jaks, activated via autophosphorylation following ligand-induced receptor aggregation, phosphorylate tyrosine residues on associated receptors, Stat molecules and other downstream signaling proteins (1,2). The phosphorylation of Stat proteins at conserved tyrosine residues activates SH2-mediated dimerization followed rapidly by nuclear translocation. Stat dimers bind to IRE (interferon response element) and GAS (gamma interferon-activated sequence) DNA elements, resulting in the transcriptional regulation of downstream genes (1,2). The remarkable range and specificity of responses regulated by the Stats is determined in part by the tissue-specific expression of different cytokine receptors, Jaks and Stats (2,3), and by the combinatorial coupling of various Stat members to different receptors. Serine phosphorylation in the carboxy-terminal transcriptional activation domain has been shown to regulate the function of Stat1, -2, -3, -4 and -5 (1). Phosphorylation of Stat3 at Ser727 via MAPK or mTOR pathways is required for optimal transcriptional activation in response to growth factors and cytokines including IFN-gamma and CNTF (4,5). Jak/Stat pathways also play important roles in oncogenesis, tumor progression, angiogenesis, cell motility, immune responses and stem cell differentiation (6-11).

The Human Reactive Inflammasome Antibody Sampler Kit II provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Mouse Reactive Inflammasome Antibody Sampler Kit provides an economical means of detecting multiple inflammasome components. The kit includes enough antibodies to perform at least two western blot experiments with each primary antibody.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

Cell Cycle Regulation Antibody Sampler kit offers an economical way of detecting eight integral cell cycle regulation proteins. The kit contains enough primary and secondary antibodies to perform two western blot experiments with each primary antibody.

Background: Eukaryotic cell cycle progression is dependent, in part, on the tightly regulated activity of cyclin dependent kinases (CDKs). Cyclin D/CDK4/6 activity occurs in mid-late G1 phase, upstream of CDK2/cyclin E activity. Both of these activities are required for hyperphosphorylation of the retinoblastoma gene product (pRb). pRb phosphorylation allows the release of S phase-promoting transcription factors and is indicative of the cell's commitment to proliferate. This point in the cell cycle is known as the restriction point. Cyclin protein levels oscillate throughout the cell cycle, and their availability is a means of controlling CDK activity and cell proliferation. Cyclin D is degraded through the ubiquitin proteasome pathway in the absence of mitogenic signaling. Ubiquitination of cyclin D1 is enhanced by phosphorylation at Thr286 by glycogen synthase kinase 3b (GSK-3b) (1). p27/Kip1, p57 Kip2 and p21 Waf1/Cip1 are members of the Cip/Kip family of cyclin-dependent kinase inhibitors. They form heterotrimeric complexes with cyclins and CDKs, inhibiting kinase activity and blocking progression through G1/S phase (2). However, p21 may enhance assembly and activity of cyclin D/CDK4/6 complexes (3). Levels of p21 and p27 protein are controlled through ubiquitination and proteasomal degradation (4). Levels of p27 are upregulated in quiescent cells and in cells treated with negative cell cycle regulators. p27 nuclear localization is controlled by Akt-dependent phosphorylation at Thr157 (5). The inhibitors of CDK4 (INK4) family include p15 INK4B, p16 INK4A, p18 INK4C, and p19 INK4D. All INK4 proteins selectively inhibit CDK4/6 activity, either in a binary complex, or in a ternary complex including cyclin D, resulting in inhibition of cell division (6,7).

The Notch Receptor Interaction Antibody Sampler Kit provides an economical means to evaluate Notch signaling. The kit contains enough primary antibody to perform two western blots per primary.
The CDK Antbody Sampler Kit provides and economical means of evaluating Cdk proteins. The kit contains enough primary and secondary antibodies to perform two western blot experiments.
The Cell Fractionation Antibody Sampler Kit provides an economical means for determining the purity of each distinctly separated subcellular fraction by western blot using Cell Signaling Technology's Cell Fractionation Kit #9038. This antibody sampler kit includes enough primary antibody to perform at least two western blots per primary antibody.
The Neuronal Marker IF Antibody Sampler Kit provides an economical means for labeling neuronal structures by immunofluorescence (IF-F). This kit includes enough primary antibody to perform at least forty IF-F tests or two western blot experiments per primary antibody.
The Vimentin Antibody Sampler Kit provides an economical means to detect total levels of vimentin, vimentin phosphorylated at Ser56, and vimentin phosphorylated at Ser82. The kit contains enough primary and secondary antibody to perform two western blot experiments.

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are distinguished by their cell-specific expression: cytokeratins (epithelial cells), glial fibrillary acidic protein (GFAP) (glial cells), desmin (skeletal, visceral, and certain vascular smooth muscle cells), vimentin (mesenchyme origin), and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). Research studies have shown that vimentin is present in sarcomas, but not carcinomas, and its expression is examined in conjunction with that of other markers to distinguish between the two (3). Vimentin's dynamic structural changes and spatial re-organization in response to extracellular stimuli help to coordinate various signaling pathways (4). Phosphorylation of vimentin at Ser56 in smooth muscle cells regulates the structural arrangement of vimentin filaments in response to serotonin (5,6). Remodeling of vimentin and other intermediate filaments is important during lymphocyte adhesion and migration through the endothelium (7).During mitosis, CDK1 phosphorylates vimentin at Ser56. This phosphorylation provides a PLK binding site for vimentin-PLK interaction. PLK further phosphorylates vimentin at Ser82, which might serve as memory phosphorylation site and play a regulatory role in vimentin filament disassembly (8,9). Additionally, studies using various soft-tissue sarcoma cells have shown that phosphorylation of vimentin at Ser39 by Akt1 enhances cell migration and survival, suggesting that vimentin could be a potential target for soft-tissue sarcoma targeted therapy (10,11).

The Matrix Remodeling Antibody Sampler Kit provides an economical means of detecting different MMPs and TIMPs using the specific corresponding antibodies. The kit contains enough antibody to perform at least two western blot experiments with each primary antibody.

Background: Matrix remodeling is mainly controlled by MMPs and TIMPs. The matrix metalloproteinase (MMP) family of proteases are a group of zinc-dependent enzymes that target extracellular proteins, including growth factors, cell surface receptors, adhesion molecules, matrix structural proteins, and other proteases (1, 2). Among the family members, MMP-2, MMP-3, MMP-7, MMP-9, and MMP14 (MT1-MMP) have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (3). MMP activity is regulated by mechanisms of both transcriptional control and post translational protein processing. Once synthesized, MMPs exist as latent proenzymes. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full-length protein (4). MMP activity can be inhibited through its binding to endogenously expressed TIMPs. TIMPs are members of the family of tissue inhibitors of matrix metalloproteinases that include TIMP1, TIMP2, TIMP3, and TIMP4. The main function of TIMPs is their inhibitory effect on MMPs. TIMPs irreversibly inactivate MMPs by direct binding MMPs and chelating their zinc cofactor at the catalytic site to inhibit the proteinase function (5,6).

The Neuronal Marker IF Antibody Sampler Kit II provides an economical means for labeling cell types and cell structures by immunofluorescence (IF-F).