Microsize antibodies for $99 | Learn More >>

Antibody Sampler Kit Cellular Copper Ion Homeostasis

The Pathological Hallmarks of Alzheimer's Disease Antibody Sampler Kit provides an economical means of detecting the activation of Tau and APP family members using phospho-specific, and control antibodies for both proteins. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.

Background: Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Six isoforms with different amino-terminal inserts and different numbers of tandem repeats near the carboxy terminus have been identified, and tau is hyperphosphorylated at approximately 25 sites by ERK, GSK-3, and CDK5 (1,2). Phosphorylation decreases the ability of tau to bind to microtubules. Neurofibrillary tangles are a major hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. In particular, phosphorylation at Ser396 by GSK-3 or CDK5 destabilizes microtubules. Furthermore, research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3). The cerebrospinal fluid concentration of tau phosphorylated at Thr181 has been proposed to be a biomarker for the study of neurodegenerative disorders (4).Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (4). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (4). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (4). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (5-8). Aβ-43 has been suggested as a biomarker in early onset of Alzheimer's disease, where patients have lower levels of Aβ-43 in cerebrospinal fluid (8-10). Several studies have shown that Aβ toxicity of Aβ-43 is as high as Aβ-42 or Aβ-40 in different models of Alzheimer's disease, including mouse models and human disease (10).

The β-Amyloid Antibody Sampler Kit provides an economical means of detecting APP and APP unmodified/modified fragments using total and fragment-specific antibodies. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains an amyloid domain, which can be processed and released by two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). Several fragments corresponding to progressive APP processing at alternative cleavage sites have been identified (2). These include Aβ (1-37), Aβ (1-39), Aβ (1-40), and Aβ (1-42) (2). These fragments can also be N-terminally modified to generate pyroglutamate-3 Aβ (pE3-peptide) (3). Fragment-specific and pan-Aβ antibodies are used to detect and examine relative levels of individual Aβ fragments.

The Mitochondrial Marker Antibody Sampler Kit provides an economical means to evaluate relevant mitochondial proteins. This kit contains enough primary antibody to perform two western blots per primary.
The Parkinson's Research Antibody Sampler Kit provides an economical means of detecting target proteins related to Parkinson's disease. The kit contains enough primary and secondary antibody to perform two western blots per primary.
The Pro-Apoptosis Bcl-2 Family Antibody Sampler Kit II provides an economical means to examine several members of the Bcl-2 family. The kit contains enough primary antibody to perform two western blot experiments.

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

The Pro-Apoptosis Bcl-2 Family Antibody Sampler Kit provides an economical means to examine several members of the Bcl-2 family and their activation status. The kit contains enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.