Microsize antibodies for $99 | Learn More >>

Antibody Sampler Kit Extracellular Matrix Disassembly

The Matrix Remodeling Antibody Sampler Kit provides an economical means of detecting different MMPs and TIMPs using the specific corresponding antibodies. The kit contains enough antibody to perform at least two western blot experiments with each primary antibody.

Background: Matrix remodeling is mainly controlled by MMPs and TIMPs. The matrix metalloproteinase (MMP) family of proteases are a group of zinc-dependent enzymes that target extracellular proteins, including growth factors, cell surface receptors, adhesion molecules, matrix structural proteins, and other proteases (1, 2). Among the family members, MMP-2, MMP-3, MMP-7, MMP-9, and MMP14 (MT1-MMP) have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (3). MMP activity is regulated by mechanisms of both transcriptional control and post translational protein processing. Once synthesized, MMPs exist as latent proenzymes. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full-length protein (4). MMP activity can be inhibited through its binding to endogenously expressed TIMPs. TIMPs are members of the family of tissue inhibitors of matrix metalloproteinases that include TIMP1, TIMP2, TIMP3, and TIMP4. The main function of TIMPs is their inhibitory effect on MMPs. TIMPs irreversibly inactivate MMPs by direct binding MMPs and chelating their zinc cofactor at the catalytic site to inhibit the proteinase function (5,6).

Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides an economical means of detecting multiple components of the SASP. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2). The composition of the SASP varies, and SASP components can be either beneficial or deleterious in human disease, depending on the context (3).Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides a collection of antibodies to various SASP components, including TNF-alpha, interleukin-6 (IL-6), the multifunctional cytokine IL-1beta, the chemokines CXCL10, RANTES/CCL5 and MCP-1, the matrix metalloprotease MMP3, and the serine-protease inhibitor PAI-1.

The Senescence Marker Antibody Sampler Kit provides an economical means of detecting multiple markers of cellular senescence. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2).Because there is no single biomarker that can be used to definitively identify senescent cells, researchers must rely on a collection of biomarkers commonly associated with senescence. The Senescence Marker Antibody Sampler Kit provides a collection of antibodies to commonly used biomarkers of senescence-associated cell cycle arrest (p16 INK4A, p21 Waf1/Cip1), senescence-associated DNA damage (gamma-Histone H2A.X), and the SASP (HMGB1, IL-6, TNF-alpha, MMP3). The kit also includes an antibody to Lamin B1, which is frequently reduced in senescent cells.

The Procaspase Antibody Sampler Kit provides an economical means to evaluate the abundance and activation of caspases. The kit contains enough primary antibody to perform at least two western blots per primary antibody.
The Notch Receptor Interaction Antibody Sampler Kit provides an economical means to evaluate Notch signaling. The kit contains enough primary antibody to perform two western blots per primary.
The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform two western blot experiments per primary antibody.
The Cleaved Caspase Antibody Sampler Kit provides an economical means to evaluate the activation status of caspases by detecting their cleaved forms. The kit contains enough primary and secondary antibodies to perform two western blot experiments with each primary antibody.

Background: Apoptosis is a regulated physiological process leading to cell death. Caspases, a family of cysteine acid proteases, are central regulators of apoptosis. Initiator caspases (including 8, 9, 10 and 12) are closely coupled to proapoptotic signals. Once activated, these caspases cleave and activate downstream effector caspases (including 3, 6 and 7), which in turn cleave cytoskeletal and nuclear proteins like PARP, α-fodrin, DFF and lamin A, and induce apoptosis. Cytochrome c released from mitochondria is coupled to the activation of caspase-9, a key initiator caspase (1). Proapoptotic stimuli include the FasL, TNF-α, DNA damage and ER stress. Fas and TNFR activate caspases 8 and 10 (2), DNA damage leads to the activation of caspase-9 and ER stress leads to the calcium-mediated activation of caspase-12 (3). The inhibitor of apoptosis protein (IAP) family includes XIAP and survivin and functions by binding and inhibiting several caspases (4,5). Smac/Diablo, a mitochondrial protein, is released into the cytosol upon mitochondrial stress and competes with caspases for binding of IAPs. The interaction of Smac/Diablo with IAPs relieves the inhibitory effects of the IAPs on caspases (6).

This Cadherin-Catenin Antibody Sampler kit contains reagents to examine the total protein levels of key proteins found in cell-cell adherens junctions. The kit contains enough primary and secondary antibodies to perform two Western blot experiments.
The Initiator Caspases Antibody Sampler Kit provides an economical means of evaluating initiator (apical) caspase proteins. The kit contains enough primary antibody to perform two western blots with each primary antibody.
The γ Secretase Antibody Sampler Kit provides an economical means of evaluating components of the gamma secretase complex. The kit contains enough primary and secondary antibodies to perform two western miniblot experiments.
The Apoptosis/Necroptosis Antibody Sampler Kit provides an economical means of detecting markers for apoptosis and necroptosis. The kit contains enough primary antibody to perform at least two western blot experiments.

Background: Apoptosis is a regulated physiological process leading to cell death (1,2). Caspases, a family of cysteine acid proteases, are central regulators of apoptosis. Caspases are synthesized as inactive zymogens containing a pro-domain followed by large (p20) and small subunits (p10) that are proteolytically processed in a cascade of caspase activity. Initiator caspases (including 8, 9, 10, and 12) are closely coupled to proapoptotic signals. Once activated, these caspases cleave and activate downstream effector caspases (including 3, 6, and 7), which in turn cleave cytoskeletal and nuclear proteins like PARP, α-fodrin, DFF, and lamin A, and induce apoptosis. Cytochrome c released from mitochondria is coupled to the activation of caspase-9, a key initiator caspase. Apoptosis induced through the extrinsic mechanisms involving death receptors in the tumor necrosis factor receptor superfamily activates caspase-8. Activated caspase-8 cleaves and activates downstream effector caspases, such as caspase-1, -3, -6, and -7. Caspase-3 is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP).Necroptosis, a regulated pathway for necrotic cell death, is triggered by a number of inflammatory signals, including cytokines in the tumor necrosis factor (TNF) family, pathogen sensors such as toll-like receptors (TLRs), and ischemic injury (3,4). Necroptosis is negatively regulated by caspase-8 mediated apoptosis in which the kinase RIP/RIPK1 is cleaved (5). Furthermore, necroptosis is inhibited by a small molecule inhibitor of RIP, necrostatin-1 (Nec-1) (6). Research studies show that necroptosis contributes to a number of pathological conditions, and Nec-1 has been shown to provide neuroprotection in models such as ischemic brain injury (7). RIP is phosphorylated at several sites within the kinase domain that are sensitive to Nec-1, including Ser14, Ser15, Ser161, and Ser166 (8). Phosphorylation drives association with RIP3, which is required for necroptosis (9-11). Mixed lineage kinase domain-like protein (MLKL) is a pseudokinase that was identified as downstream target of RIP3 in the necroptosis pathway (12). During necroptosis RIP3 is phosphorylated at Ser227, which recruits MLKL and leads to its phosphorylation at Thr357 and Ser358 (12). Knockdown of MLKL through multiple mechanisms results in inhibition of necroptosis (13). While the precise mechanism for MLKL-induced necroptosis is unclear, some studies have shown that necroptosis leads to oligomerization of MLKL and translocation to the plasma membrane, where it effects membrane integrity (14-17).

The Exosomal Marker Antibody Sampler Kit provides an economical means to evaluate the presence of exosomal markers. The kit includes enough primary antibody to perform two western blot experiments for each target.
The Focal Adhesion Protein Antibody Sampler Kit provides an economical means to evaluate proteins involved in focal adhesions. The kit includes enough antibody to perform two western blot experiments per primary antibody.
The Angiogenesis Antibody Sampler Kit provides an economical means to investigate the angiogenic pathway downstream of VEGFR2. The kit contains enough primary antibody to perform two western blots per primary antibody.
The FAK Antibody Sampler Kit provides an economical means of evaluating total FAK protein levels as well as FAK phosphorylated at specific sites. The kit contains enough primary and secondary antibody to perform two western blots with each antibody.

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).