20% off purchase of 3 or more products* | Learn More >>

Assay Kit Identical Protein Binding

Also showing Assay Kit Microtubule Organizing Center

100 assays (96 well format)
1 Kit
The Glucose-6-Phosphate Dehydrogenase (G6PD) Activity Assay Kit contains the necessary reagents for rapid, sensitive, and simple detection of G6PD activity in various samples. In the assay, glucose-6-phosphate (G6P), in the presence of NADP, is oxidized by G6PD to generate 6-phosphogluconolactone and NADPH. The generated NADPH is then amplified by the diaphorase-cycling system to produce highly fluorescent resorufin molecules (see Figure 1). The relative fluorescent units (RFU) can then be determined using a plate reader with excitation about 540 nm and emission about 590 nm. The magnitude of RFU is proportional to G6PD activity in the sample.
All Species Expected

Background: Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first, and rate-limiting, step of the pentose phosphate pathway (1). The NADPH generated from this reaction is essential to protect cells from oxidative stress (1). Research studies have shown that p53 interacts with G6PD and inhibits its activity, therefore suppressing glucose consumption through the pentose phosphate pathway (2). In cancer cells with p53 mutations, the increased glucose consumption is directed towards increased biosynthesis, which is critical for cancer cell proliferation (2).

30 rxns
1 Kit
The Active Cdc42 Detection Kit provides all reagents necessary for measuring activation of Cdc42 GTPase in the cell. GST-PAK1-PBD fusion protein is used to bind the activated form of GTP-bound Cdc42, which can then be immunoprecipitated with glutathione resin. Cdc42 activation levels are then determined by western blot using a Cdc42 Mouse mAb.
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ras superfamily of small GTP-binding proteins (G proteins) comprise a large class of proteins (over 150 members) that can be classified into at least five families based on their sequence and functional similarities: Ras, Rho, Rab, Arf, and Ran (1-3). These small G proteins have both GDP/GTP-binding and GTPase activities and function as binary switches in diverse cellular and developmental events that include cell cycle progression, cell survival, actin cytoskeletal organization, cell polarity and movement, and vesicular and nuclear transport (1). An upstream signal stimulates the dissociation of GDP from the GDP-bound form (inactive), which leads to the binding of GTP and formation of the GTP-bound form (active). The activated G protein then goes through a conformational change in its downstream effector-binding region, leading to the binding and regulation of downstream effectors. This activation can be switched off by the intrinsic GTPase activity, which hydrolyzes GTP to GDP and releases the downstream effectors. These intrinsic guanine nucleotide exchange and GTP hydrolysis activities of Ras superfamily proteins are also regulated by guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound form and GTPase activating proteins (GAPs) that return the GTPase to its GDP-bound inactive form (4).