Microsize antibodies for $99 | Learn More >>

Dog Perinuclear Region of Cytoplasm

$260
100 µl
APPLICATIONS
REACTIVITY
Dog, Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Autocrine motility factor receptor (AMFR/gp78) is a putative seven transmembrane domain G protein-coupled receptor that functions, in part, at the cell surface as a cytokine receptor for autocrine motility factor/phosphoglucose isomerase (AMF/PGI). AMFR is also localized to an intracellular mitochondria-associated smooth ER domain where it functions as an E3 ubiquitin ligase (1). AMFR function, as both a cytokine receptor and ubiquitin ligase, is linked to a variety of cellular signaling cascades associated with metastasis development and increased invasiveness. AMFR was initially proposed to be a RING-H2 E3 ubiquitin ligase after sequence analysis identified a catalytic RING finger and CUE motif, which are responsible for ubiquitin ligase activity and ubiquitin binding, respectively (2,3). Indeed, AMFR is a key component and amongst the best characterized ubiquitin ligases of the endoplasmic reticulum associated degradation (ERAD) machinery, a process involving recognition of misfolded proteins, ubiquitination, deglycosylation, retro-translocation to the cytosol, and targeting to the proteasome (4). Recent studies have shown that AMFR plays an important role in cholesterol homeostasis via the sterol-mediated ubiquitination of HMG-CoA reductase and its cofactor Insig-1 (5,6). Furthermore, AMFR has been implicated in the degradation of apolipoprotein B100 (7). It was recently reported that AMFR degrades the metastasis suppressor KAI-1/CD-82, representing the first evidence that AMFR ubiquitin ligase activity is involved in metastasis development (8). Increased expression of AMFR correlates with a high incidence of recurrence and reduced survival in patients with bladder, colorectal, and gastric cancers (9-11).

$141
20 µl
$348
100 µl
APPLICATIONS
REACTIVITY
Dog, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric and immunofluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Non-phospho (Active) β-Catenin (Ser45) (D2U8Y) XP® Rabbit mAb #19807.
APPLICATIONS
REACTIVITY
Dog, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Bovine, Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The 21-24 kDa integral proteins, caveolins, are the principal structural components of the cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae. Three members of the caveolin family (caveolin-1, -2, and -3) have been identified with different tissue distributions. Caveolins form hetero- and homo-oligomers that interact with cholesterol and other lipids (1). Caveolins are involved in diverse biological functions, including vesicular trafficking, cholesterol homeostasis, cell adhesion, and apoptosis, and are also implicated in neurodegenerative disease (2). Caveolins interact with multiple signaling molecules such as Gα subunit, tyrosine kinase receptors, PKCs, Src family tyrosine kinases, and eNOS (1,2). It is believed that caveolins serve as scaffolding proteins for the integration of signal transduction. Phosphorylation at Tyr14 is essential for caveolin association with SH2 or PTB domain-containing adaptor proteins such as GRB7 (3-5). Phosphorylation at Ser80 regulates caveolin binding to the ER membrane and entry into the secretory pathway (6).

$489
96 assays
1 Kit
The PathScan® Phospho-Src (Tyr416) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-Src (Tyr416). A phospho-Src rabbit antibody has been coated onto the microwells. After incubation with cell lysates, phospho-Src (Tyr416) is captured by the coated antibody. Following extensive washing, a Src mouse detection antibody is added to detect the captured phospho-Src (Tyr416). Anti-mouse, HRP-linked antibody is then used to recognize the bound detection antibody. The HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-Src (Tyr416).Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Dog, Human

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$469
Reagents for 4 x 96 well plates
1 Kit
Cell Signaling Technology's PathScan® Phospho-Src (Tyr416) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-Src (Tyr416) Sandwich ELISA Kit #7953. Capture and detection antibodies (100X stocks) and an HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The phospho-Src (Tyr416) rabbit capture antibody is coated onto a 96 well microplate overnight in PBS. After blocking, cell lysates are added followed by a total Src mouse detection antibody and anti-mouse IgG, HRP-linked antibody. HRP substrate (TMB) is then added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-Src (Tyr416).Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Dog, Human

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$348
100 µl
This Cell Signaling Technology® antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Caveolin-1 (D46G3) XP® Rabbit mAb #3267.
APPLICATIONS
REACTIVITY
Bovine, Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 21-24 kDa integral proteins, caveolins, are the principal structural components of the cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae. Three members of the caveolin family (caveolin-1, -2, and -3) have been identified with different tissue distributions. Caveolins form hetero- and homo-oligomers that interact with cholesterol and other lipids (1). Caveolins are involved in diverse biological functions, including vesicular trafficking, cholesterol homeostasis, cell adhesion, and apoptosis, and are also implicated in neurodegenerative disease (2). Caveolins interact with multiple signaling molecules such as Gα subunit, tyrosine kinase receptors, PKCs, Src family tyrosine kinases, and eNOS (1,2). It is believed that caveolins serve as scaffolding proteins for the integration of signal transduction. Phosphorylation at Tyr14 is essential for caveolin association with SH2 or PTB domain-containing adaptor proteins such as GRB7 (3-5). Phosphorylation at Ser80 regulates caveolin binding to the ER membrane and entry into the secretory pathway (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Dog, Human

Application Methods: Western Blotting

Background: The myosin family of motor proteins drive ATP-dependent actin-based motility in eukaryotic cells and contain a conserved amino-terminal motor domain (reviewed in 1,2).Myosin VI is an unconventional minus-end-directed myosin involved in the transport of vesicles and organelles within the cell, endocytosis, and organelle biogenesis (3-6). The movement of myosin VI and its cargo along actin filaments is unique among myosin family members in its mechanism; its tail domain structure allows it to take larger than predicted steps along the actin filament (reviewed in 1,7).Myosin VI has been shown to regulate the polarized delivery of proteins to specialized subcellular locations, including the delivery of EGFR to the leading edge of migrating cells (8), as well as the delivery of specialized axonal proteins in neurons (9). Myosin VI has also been shown to mediate activity of the tumor suppressor p53 during DNA damage (10,11).