Microsize antibodies for $99 | Learn More >>

Human Chemotaxis

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: RANTES/CCL5 (regulated upon activation, T cell expressed and secreted) is a member of the "C-C" or β family of chemokines that induce inflammation and are associated with a number of inflammatory disorders (1,2). RANTES is produced and secreted mainly by CD8+ T cells, macrophages, and platelets, as well as epithelial cells, fibroblasts and some solid tumors (2-7). RANTES acts as a chemoattractant and has other regulatory functions on a number of cell types including monocytes, memory T cells, NK cells, eosinophils, basophils, dendritic cells, and mast cells (3, 7-9). Signaling by RANTES is mediated by several G-protein coupled receptors (GPCRs), including CCR1, CCR3, CCR4 and CCR5.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: RANTES/CCL5 (regulated upon activation, T cell expressed and secreted) is a member of the "C-C" or β family of chemokines that induce inflammation and are associated with a number of inflammatory disorders (1,2). RANTES is produced and secreted mainly by CD8+ T cells, macrophages, and platelets, as well as epithelial cells, fibroblasts and some solid tumors (2-7). RANTES acts as a chemoattractant and has other regulatory functions on a number of cell types including monocytes, memory T cells, NK cells, eosinophils, basophils, dendritic cells, and mast cells (3, 7-9). Signaling by RANTES is mediated by several G-protein coupled receptors (GPCRs), including CCR1, CCR3, CCR4 and CCR5.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by an affinity for poly-N-acetyllactosamine-enriched glycoconjugates and a carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T-cell apoptosis (6), and immune responses (7).Galectin-3/LGALS3 is involved in several diverse biological functions. Galectin-3/LGALS3 binds IgE (8). Galectin-3/LGALS3 is an unusual protein in that can be found both extracellularly and intracellularly. Intracellularly, galectin-3/LGALS3 can localize to the cytoplasm, nucleus, or both, depending on cell type and experimental conditions. Nuclear galectin-3/LGALS3 has been identified as a pre-mRNA splicing factor (9). Galectin-3/LGALS3 production has been shown to increase during inflammation and in obesity, and the protein itself can have an inflammatory effect under certain conditions (10). Galectin-3/LGALS3 forms a complex with α3, β1 integrin to act as a surface receptor on endothelial cells for the NG2 proteoglycan, which triggers cell motility and angiogenesis (11). In addition to these functions, galectin-3/LGALS3 is also a required factor for the terminal differentiation of epithelial cells (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by an affinity for poly-N-acetyllactosamine-enriched glycoconjugates and a carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T-cell apoptosis (6), and immune responses (7).Galectin-3/LGALS3 is involved in several diverse biological functions. Galectin-3/LGALS3 binds IgE (8). Galectin-3/LGALS3 is an unusual protein in that can be found both extracellularly and intracellularly. Intracellularly, galectin-3/LGALS3 can localize to the cytoplasm, nucleus, or both, depending on cell type and experimental conditions. Nuclear galectin-3/LGALS3 has been identified as a pre-mRNA splicing factor (9). Galectin-3/LGALS3 production has been shown to increase during inflammation and in obesity, and the protein itself can have an inflammatory effect under certain conditions (10). Galectin-3/LGALS3 forms a complex with α3, β1 integrin to act as a surface receptor on endothelial cells for the NG2 proteoglycan, which triggers cell motility and angiogenesis (11). In addition to these functions, galectin-3/LGALS3 is also a required factor for the terminal differentiation of epithelial cells (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The stromal cell derived factor 1 (SDF1/CXCL12) is a small, pro-inflammatory chemoattractant cytokine that regulates leukocyte trafficking through interactions with its cognate 7-transmembrane G protein-coupled receptors (1). The SDF1/CXCL12 receptor, CXCR4, also serves as a coreceptor for the entry of human immunodeficiency virus into target cells (2). SDF1/CXCL12 may regulate homing and maintenance of CXCR4-expressing stem or progenitor cells, including embryonic and many somatic stem cells (3,4). Many cancer cells express CXCR4, suggesting that SDF1/CXCL12 plays a role in cancer metastasis (5,6). Alternative splicing and differential processing during maturation produce a pair of SDF1/CXCL12 isoforms (SDF1/CXCL12α and SDF1/CXCL12β) that have different properties and biological activities (7). Additional isoforms of SDF1/CXCL12 have been reported (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The stromal cell derived factor 1 (SDF1/CXCL12) is a small, pro-inflammatory chemoattractant cytokine that regulates leukocyte trafficking through interactions with its cognate 7-transmembrane G protein-coupled receptors (1). The SDF1/CXCL12 receptor, CXCR4, also serves as a coreceptor for the entry of human immunodeficiency virus into target cells (2). SDF1/CXCL12 may regulate homing and maintenance of CXCR4-expressing stem or progenitor cells, including embryonic and many somatic stem cells (3,4). Many cancer cells express CXCR4, suggesting that SDF1/CXCL12 plays a role in cancer metastasis (5,6). Alternative splicing and differential processing during maturation produce a pair of SDF1/CXCL12 isoforms (SDF1/CXCL12α and SDF1/CXCL12β) that have different properties and biological activities (7). Additional isoforms of SDF1/CXCL12 have been reported (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Western Blotting

Background: The 21 kDa guanine-nucleotide binding proteins (K-Ras, H-Ras, and N-Ras) cycle between active (GTP-bound) and inactive (GDP-bound) forms (1). Receptor tyrosine kinases and G protein-coupled receptors activate Ras, which then stimulates the Raf-MEK-MAPK pathway (2-4). GTPase-activating proteins (GAP) normally facilitate the inactivation of Ras. However, research studies have shown that in 30% of human tumors, point mutations in Ras prevent the GAP-mediated inhibition of this pathway (5). The most common oncogenic Ras mutation found in tumors is Gly12 to Asp12 (G12D), which prevents Ras inactivation, possibly by increasing the overall rigidity of the protein (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: The stromal cell derived factor 1 (SDF1/CXCL12) is a small, pro-inflammatory chemoattractant cytokine that regulates leukocyte trafficking through interactions with its cognate 7-transmembrane G protein-coupled receptors (1). The SDF1/CXCL12 receptor, CXCR4, also serves as a coreceptor for the entry of human immunodeficiency virus into target cells (2). SDF1/CXCL12 may regulate homing and maintenance of CXCR4-expressing stem or progenitor cells, including embryonic and many somatic stem cells (3,4). Many cancer cells express CXCR4, suggesting that SDF1/CXCL12 plays a role in cancer metastasis (5,6). Alternative splicing and differential processing during maturation produce a pair of SDF1/CXCL12 isoforms (SDF1/CXCL12α and SDF1/CXCL12β) that have different properties and biological activities (7). Additional isoforms of SDF1/CXCL12 have been reported (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SLIT2 is an extracellular matrix-associated SLIT family member that functions as a ligand for roundabout (ROBO) family receptors (1). Activation of ROBO receptors by SLIT2 regulates various biological processes, including promoting cellular senescence via WNT inhibition (2), suppressing migration by enhanced β-catenin/E-cadherin association, regulating actin polymerization (4, 5), and suppressing cell proliferation induced by SDF1 and MCP1 (6, 7). In development, the SLIT-ROBO pathways play important roles in neuronal axon guidance, angiogenesis, and both kidney and mammary gland organogenesis. SLIT2 expression has been reported to suppress cancer cell growth, invasion, and metastasis, suggesting that modulation of SLIT2-ROBO signaling may have therapeutic potential in cancer biology (8, 9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Vascular endothelial growth factor (VEGF) is a highly specific mitogen for vascular endothelial cells. VEGF and its close relatives VEGF-B, -C and -D form a subfamily within PDGF family of growth factors, which belongs to the cysteine knot class of cytokines. Five VEGF isoforms of 121, 145, 165, 189 and 206 amino acids (VEGF121–206) are generated as a result of alternative splicing from a single VEGF gene (1).The various VEGF forms bind to three tyrosine-kinase receptors, VEGFR-1, VEGFR-2 and VEGFR-3 which are expressed almost exclusively in endothelial cells. VEGFR-2 is the main angiogenic signal transducer for VEGF, while VEGFR-3 is specific for VEGF-C and -D and is necessary and sufficient for lymphangiogenic signaling. However, upon proteolytic processing VEGF-C and -D gain the ability to also bind and activate VEGFR-2 (2). Guided by the binding properties of the ligands, the VEGFRs are able to form both homodimers and heterodimers. Receptor dimerization is accompanied by activation of receptor kinase activity leading to receptor autophosphorylation. Phosphorylated receptors recruit interacting proteins and induce downstream signaling (3). Recently, tumor therapies based on neutralizing anti-VEGF antibodies and small molecule tyrosine kinase inhibitors targeting VEGFRs have been developed. These new strategies for tumor treatment show the clinical relevance of inhibiting VEGF signal transduction pathways that are exaggerated in pathological angiogenesis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Vascular endothelial growth factor (VEGF) is a highly specific mitogen for vascular endothelial cells. VEGF and its close relatives VEGF-B, -C and -D form a subfamily within PDGF family of growth factors, which belongs to the cysteine knot class of cytokines. Five VEGF isoforms of 121, 145, 165, 189 and 206 amino acids (VEGF121–206) are generated as a result of alternative splicing from a single VEGF gene (1).The various VEGF forms bind to three tyrosine-kinase receptors, VEGFR-1, VEGFR-2 and VEGFR-3 which are expressed almost exclusively in endothelial cells. VEGFR-2 is the main angiogenic signal transducer for VEGF, while VEGFR-3 is specific for VEGF-C and -D and is necessary and sufficient for lymphangiogenic signaling. However, upon proteolytic processing VEGF-C and -D gain the ability to also bind and activate VEGFR-2 (2). Guided by the binding properties of the ligands, the VEGFRs are able to form both homodimers and heterodimers. Receptor dimerization is accompanied by activation of receptor kinase activity leading to receptor autophosphorylation. Phosphorylated receptors recruit interacting proteins and induce downstream signaling (3). Recently, tumor therapies based on neutralizing anti-VEGF antibodies and small molecule tyrosine kinase inhibitors targeting VEGFRs have been developed. These new strategies for tumor treatment show the clinical relevance of inhibiting VEGF signal transduction pathways that are exaggerated in pathological angiogenesis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fibroblast growth factors are a family of broad-spectrum growth factors influencing a plethora of cellular activities. The interaction of at least 23 ligands, 4 receptors and multiple coreceptors provides a dramatic complexity to a signaling system capable of effecting a multitude of responses (1,2). Basic fibroblast growth factor (bFGF or FGF2), initially identified as a mitogen with prominent angiogenic properties, is now recognized as a multifunctional growth factor (3). It is clear that bFGF produces its biological effects in target cells by signaling through cell-surface FGF receptors. bFGF binds to all four FGF receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic downstream target proteins, including FRS-2, PLC and Crk (4,5). The FGF signaling pathway appears to play a significant role not only in normal cell growth regulation but also in tumor development and progression (6).Acidic FGF (aFGF or FGF1) is another extensively investigated protein of the FGF family. aFGF shares 55% DNA sequence homology with bFGF. These two growth factors are ubiquitously expressed and exhibit a wide spectrum of similiar biological activities with quantitative differences likely due to variation in receptor affinity or binding (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 21 kDa guanine-nucleotide binding proteins (K-Ras, H-Ras, and N-Ras) cycle between active (GTP-bound) and inactive (GDP-bound) forms (1). Receptor tyrosine kinases and G protein-coupled receptors activate Ras, which then stimulates the Raf-MEK-MAPK pathway (2-4). GTPase-activating proteins (GAP) normally facilitate the inactivation of Ras. However, research studies have shown that in 30% of human tumors, point mutations in Ras prevent the GAP-mediated inhibition of this pathway (5). The most common oncogenic Ras mutation found in tumors is Gly12 to Asp12 (G12D), which prevents Ras inactivation, possibly by increasing the overall rigidity of the protein (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphoinositide 3-kinase (PI3K) catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN reverses this process, and research studies have shown that the PI3K signaling pathway is constitutively activated in human cancers that have loss of function of PTEN (2). PI3Ks are composed of a catalytic subunit (p110) and a regulatory subunit. Various isoforms of the catalytic subunit (p110α, p110β, p110γ, and p110δ) have been isolated, and the regulatory subunits that associate with p110α, p110β, and p110δ are p85α and p85β (3). In contrast, p110γ associates with a p101 regulatory subunit that is unrelated to p85. Furthermore, p110γ is activated by βγ subunits of heterotrimeric G proteins (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: PAR2 (F2RL1) belongs to the PAR (Protease-activated Receptor) family of G protein-coupled receptors. These membrane receptors are activated through N-terminal cleavage of the receptor by a serine protease such as thrombin, trypsin, or matrix metalloproteinases (1,2). This cleavage exposes the ‘tethered-ligand’ fragment of the receptor, which binds to a second extracellular loop of the receptor and leads to receptor activation. PAR2 is specifically activated by trypsin or trypsin-like proteases. Activated PAR2 stimulates phosphoinositide hydrolysis and calcium mobilization, interacts with β-arrestin, and eventually leads to ERK activation (3). PAR2 expression and activation are mainly associated with inflammatory diseases (3), but may also play a role in cancer development (4,5).