Microsize antibodies for $99 | Learn More >>

Human Dna Methylation During Gametogenesis

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Protein arginine N-methyltransferase 7 (PRMT7) is a member of the protein arginine N-methyltransferase (PRMT) family of proteins that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). The three types of PRMTs share the ability to mono-methylate arginine residues, but vary in their ability to generate differential methylation states (1-3). Mono-methylated arginine residues are further methylated by type I PRMTs to generate an asymmetric di-methyl arginine or by type II PRMTs to form a symmetric-dimethyl arginine. Type III methyltransferases are only able to mono-methylate arginine residues (1-3). Research studies indicate that PRMT7 is a type III PRMT that displays substrate specificity for an arginine-X-arginine (RXR) motif surrounded by several basic residues (4,5). PRMT7 interacts with a wide array of protein substrates and likely plays a role in many biological processes including pluripotency, neuronal differentiation, genomic instability, snRNP biogenesis, and breast cancer metastasis (6-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PICK1, or Protein interacting with C-kinase 1, is a cytosolic adaptor protein composed of an N-terminus PDZ domain and a C-terminus BAR domain that allow protein and membrane interactions, respectively (1,2). PICK1 regulates endosomal trafficking and surface expression of AMPA receptors and is therefore involved in synaptic plasticity (3). PICK1 is a negative regulator of Arp2/3-dependent actin polymerization and also for the development of neuronal architecture (4). Finally, increasing evidence indicates that PICK1 expression is upregulated in a number cancers (5), and that PICK1 interacts with proteins involved in the promotion of tumorigenesis such as Ephrin receptors, Coxsackie-adenovirus receptor (CAR), and ErbB2/Her2 (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Lysine-specific demethylase 2 (LSD2; also known as AOF1) is a nuclear amine oxidase homolog that acts as a histone demethylase and transcription cofactor protein (1,2). LSD2 functions as a co-repressor protein by demethylating mono-methyl and di-methyl histone H3 Lys4, two marks associated with actively transcribed genes (1,2). LSD2-mediated demethylation of histone H3 Lys4 is required for establishing proper DNA methylation imprints during oogenesis (3). In addition, LSD2 appears to be overexpressed in malignant breast cancers, where it contributes to DNA methylation and repression of multiple tumor suppressor genes (4,5). Furthermore, LSD2 also contains E3 ubiquitin ligase activity that targets O-GlcNac transferase (OGT) for proteosomal degradation (6). A549 lung cancer cell growth is dependent on this E3 ubiquitin ligase activity, suggesting that this function of LSD2 is also important for proper gene regulation (6).