Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Human Innate Immune Response

$622
96 assays
1 Kit
CST's PathScan® MAP Kinase Multi-Target Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that combines the reagents necessary to detect endogenous levels of phospho-p44/42 MAPK (Thr202/Tyr204), phospho-p38 MAPK (Thr180/Tyr182), MEK1, phospho-MEK1 (Ser217/221), SAPK/JNK and phospho-SAPK/JNK (Thr183/Tyr185). These molecules represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth, differentiation and the response to stress and inflammation. Sixteen tests are provided for each target protein. Specific assay formulations for the indicated target proteins can be found in the datasheets associated with the individual PathScan® Sandwich ELISA Kits**. Briefly, a capture antibody has been coated onto the microwells. After incubation with cell lysates, the target protein is captured by the coated antibody. Following extensive washing, a detection antibody is added to detect the captured target protein. An HRP-linked secondary antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of bound target protein. *Antibodies in kit are custom formulations specific to kit. **See companion products.
REACTIVITY
Human, Mouse
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Tripartite motif-containing protein 21 (TRIM21) is a cytosolic antiviral protein that is induced by interferons and acts as a cytosolic IgG receptor (1,2).  TRIM21 is an activator of the innate immune system and targets antibody bound virions to the proteasome via its E3 ubiquitin ligase activity, leading to degradation of the virions in the cytosol (3,4). Interestingly, TRIM21 has also been shown to negatively regulate pathogen-induced interferon production through the polyubiquitin-mediated degradation of multiple targets including IRF3, IRF7, and DDX41 (5,6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Mouse

Application Methods: Western Blotting

Background: The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).

$327
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The unconjugated Phospho-p38 MAPK (Thr180/Tyr182) (3D7) Rabbit mAb #9215 reacts with human, mouse, rat, monkey, pig, S. cerevisiae, and D. melanogaster phospho-p38 MAP kinase (Thr180/Tyr182). CST expects that Phospho-p38 MAP Kinase (Thr180/Tyr182) (3D7) Rabbit mAb (Biotinylated) will also recognize phospho-p38 MAP kinase (Thr180/Tyr182) in these species.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Western Blotting

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis of human and mouse cells. The unconjugated antibody #9216 reacts with human, mouse, rat, D. melanogaster, monkey, S.cerevisiae and zebra fish phospho-p38 MAPK (Thr180/Tyr182). CST expects that Phospho-p38 MAPK (Thr180/Tyr182) (28B10) Mouse mAb (Alexa Fluor® 647 Conjugate) will also recognize phospho-p38 MAPK (Thr180/Tyr182) in these species.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Flow Cytometry

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$262
3 nmol
300 µl
SignalSilence® p38 MAP Kinase siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p38 MAP kinase expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$489
96 assays
1 Kit
The PathScan® Phospho-p38 MAPK (Thr180/Tyr182) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-p38 MAP kinase phosphorylated at Thr180/Tyr182. A phospho-p38 MAP kinase (Thr180/Tyr182) mouse antibody has been coated onto the microwells. After incubation with cell lysates, phospho-p38 MAP kinase (Thr180/Tyr182) protein is captured by the coated antibody. Following extensive washing, a p38 MAP kinase rabbit detection antibody is added to detect the captured phospho-p38 MAP kinase (Thr180/Tyr182). Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-p38 MAP kinase (Thr180/Tyr182).Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb #4511.
APPLICATIONS
REACTIVITY
Human, Mink, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$307
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MKK3 and MKK6 are two closely related dual-specificity protein kinases that activate p38 MAP kinase (1-5). MKK3 and MKK6 both phosphorylate and activate p38 MAP kinase at its activation site, Thr-Gly-Tyr, but do not phosphorylate or activate Erk1/2 or SAPK/JNK. Phosphorylation of p38 MAP kinase dramatically stimulates its ability to phosphorylate protein substrates such as ATF-2 and Elk-1. MKK3 and MKK6 are both activated by different forms of cellular stress and inflammatory cytokines (4,5). Activation of MKK3 and MKK6 occurs through phosphorylation at Ser189 and Thr222 on MKK3 (2) and Ser207 and Thr211 on MKK6 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Absent in melanoma 2 (AIM2) is an interferon-inducible protein containing an amino-terminal pyrin domain and carboxy-terminal HIN-200 domain that functions in innate immunity and tumor progression (1). Expression of AIM2 can inhibit cell growth and tumor formation (2,3). Furthermore, the AIM2 gene has a high frequency of mutations associated with microsatellite-unstable colorectal cancers (4). AIM2 has a critical role in the activation of caspase-1, the protease responsible for the processing of pro-inflammatory cytokines IL-1β and IL-18. Caspase-1 activation is regulated by multi-protein complexes referred to as “inflammasomes” (5,6). Distinct inflammasome complexes have been described containing NLRP1/NALP1, NLRP3/NALP3, IPAF, and AIM2. The HIN-200 domain of AIM2 is responsible for binding to cytoplasmic double stranded DNA, resulting in caspase-1 activation. (7-9). This inflammasome complex also involves binding of the pyrin domain of AIM2 to the CARD-domain protein ASC/TMS1, which then interacts directly with caspase-1. As a result, AIM2 has been demonstrated to be an important sensor for a number of different pathogens (10-12).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-p38 MAP Kinase (Thr180/Tyr182) (3D7) Rabbit mAb #9215.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Pig, Rat, S. cerevisiae

Application Methods: Flow Cytometry

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Decay-accelerating factor (DAF/CD55) is a GPI-linked plasma membrane glycoprotein normally expressed on the surface of vascular endothelial and hematopoietic cells, which are continuously exposed to autologous complement components. In conjunction with other membrane complement regulatory proteins (CD35, CD46, and CD59), DAF/CD55 protects healthy cells from inappropriate complement-mediated lysis (1). DAF/CD55 inhibits activation of the complement cascade by promoting membrane dissociation and inactivation of C3 convertase, which inhibits amplification of the classical and alternative complement cascades (2). Research studies have demonstrated that DAF/CD55 is overexpressed in a variety of solid and liquid tumors, which functions to protect tumor cells from complement-mediated attack (3,4). Given its ability to disable the complement cascade and facilitate immune evasion by tumor cells, DAF/CD55 has received attention as a potential therapeutic target for the treatment of human malignancies. CD55 deficiency is also linked to human disease. The inability to express CD55 on the surface of erythrocytes renders them highly susceptible to complement-mediated lysis, which contributes to the development of paroxymal noctural hemoglobinuria (PNH). PNH is characterized by hemolytic anaemia, pancytopenia, and venous thrombosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TREX1 is a broadly expressed 3’ to 5’ exonuclease that acts on single-stranded DNA (ssDNA) to negatively regulate the interferon-stimulatory DNA (ISD) response (1-4). In humans, there are three TREX1 isoforms generated through alternative splicing with predicted molecular weights of 32, 33, and 39 kDa (2). The transcript for the 33 kDa isoform is the most abundant (2). Mice deficient in TREX1 accumulate intracellular ssDNA, which triggers the ISD response and eventually lethal autoimmunity (3,4). Mutations in TREX1 are associated with autoimmune diseases including Aicardi-Goutieres syndrome and systemic lupus erythematosus (5,6). In addition, TREX1 prevents the cell-intrinsic innate immune response to human immunodeficiency virus (HIV) by digesting excess HIV DNA that would normally trigger induction of type I interferon (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated p38 MAPK (D13E1) XP® Rabbit mAb #8690.
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Vav proteins belong to the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho/Rac small GTPases. The three identified mammalian Vav proteins (Vav1, Vav2 and Vav3) differ in their expression. Vav1 is expressed only in hematopoietic cells and is involved in the formation of the immune synapse. Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain the Dbl homology domain, which confers GEF activity, as well as protein interaction domains that allow them to function in pathways regulating actin cytoskeleton organization (reviewed in 1). Phosphorylation stimulates the GEF activity of Vav protein towards Rho/Rac (2,3).