Microsize antibodies for $99 | Learn More >>

Human Integral to Endoplasmic Reticulum Membrane

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated BiP (C50B12) Rabbit mAb #3177.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein kinase-like endoplasmic reticulum kinase (PERK) is an eIF2α kinase and transmembrane protein resident in the endoplasmic reticulum (ER) membrane that couples ER stress signals to translation inhibition (1-3). ER stress increases the activity of PERK, which then phosphorylates eIF2α to promote reduced translation. Research studies have demonstrated that PERK-deficient mice have defects in pancreatic β cells several weeks after birth, suggesting a role for PERK-mediated translational control in protecting secretory cells from ER stress (4). PERK activation during ER stress correlates with autophosphorylation of its cytoplasmic kinase domain (1-3). Phosphorylation of PERK at Thr980 serves as a marker for its activation status.

$262
3 nmol
300 µl
SignalSilence® PERK siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PERK expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein kinase-like endoplasmic reticulum kinase (PERK) is an eIF2α kinase and transmembrane protein resident in the endoplasmic reticulum (ER) membrane that couples ER stress signals to translation inhibition (1-3). ER stress increases the activity of PERK, which then phosphorylates eIF2α to promote reduced translation. Research studies have demonstrated that PERK-deficient mice have defects in pancreatic β cells several weeks after birth, suggesting a role for PERK-mediated translational control in protecting secretory cells from ER stress (4). PERK activation during ER stress correlates with autophosphorylation of its cytoplasmic kinase domain (1-3). Phosphorylation of PERK at Thr980 serves as a marker for its activation status.

$262
3 nmol
300 µl
SignalSilence® PERK siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PERK expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein kinase-like endoplasmic reticulum kinase (PERK) is an eIF2α kinase and transmembrane protein resident in the endoplasmic reticulum (ER) membrane that couples ER stress signals to translation inhibition (1-3). ER stress increases the activity of PERK, which then phosphorylates eIF2α to promote reduced translation. Research studies have demonstrated that PERK-deficient mice have defects in pancreatic β cells several weeks after birth, suggesting a role for PERK-mediated translational control in protecting secretory cells from ER stress (4). PERK activation during ER stress correlates with autophosphorylation of its cytoplasmic kinase domain (1-3). Phosphorylation of PERK at Thr980 serves as a marker for its activation status.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ca2+ is a key second messenger in many intracellular signaling pathways. Ca2+ signals control many cellular functions ranging from short-term responses such as contraction and secretion to longer-term regulation of cell growth and proliferation (1,2). Stromal interaction molecules (STIMs) function as Ca2+ sensors that detect changes in Ca2+ content in intracellular Ca2+ stores (3). STIM1 is conserved, ubiquitously expressed, and functions as an endoplasmic reticulum (ER) Ca2+ sensor that migrates from the ER Ca2+ store to the plasma membrane where it activates calcium-release-activated calcium (CRAC) channels when the ER Ca2+ store is low (4). STIM1 is a potential tumor suppressor; defects in STIM1 may cause rhabdomyosarcoma and rhabdoid tumors (5). STIM1 can either homodimerize or form heterodimers with STIM2. STIM2 possesses a high sequence identity to STIM1 and can function as an inhibitor of STIM1-mediated plasma membrane store-operated Ca2+ entry (6). However, further investigation is required to elucidate the true physiological function of STIM2.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The secretory, intra-organellar and transmembrane proteins translocate into the endoplasmic reticulum (ER) after their synthesis. Inside the ER, they are post-translationally modified and properly folded. Disruptions of ER homeostasis leads to the accumulation of unfolded proteins (1). The ER has developed an adaptive mechanism called unfolded protein response (UPR) to counteract compromised protein folding (1). One of the players in UPR, IRE1, was first identified in Saccharomyces cerevisiae as a transmembrane serine/threonine kinase (2-4). This kinase was proposed to be a proximal sensor for UPR that transmits the unfolded protein signal across the ER membrane (3,4). A human homolog of this kinase, IRE1α, was later identified and shown to be ubiquitously expressed in human tissues (5). Upon activation of UPR, IRE1α splices X-box binding protein (XBP1) mRNA by an unconventional mechanism using its endoribonuclease activity (6). This converts XBP1 into a potent transcriptional activator that induces many UPR responsive genes (6). Recently, IRE1α was shown to mediate the rapid degradation of certain mRNAs based on the ER-localization and primary sequences of their encoded proteins, suggesting a novel mechanism in UPR (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein kinase-like endoplasmic reticulum kinase (PERK) is an eIF2α kinase and transmembrane protein resident in the endoplasmic reticulum (ER) membrane that couples ER stress signals to translation inhibition (1-3). ER stress increases the activity of PERK, which then phosphorylates eIF2α to promote reduced translation. Research studies have demonstrated that PERK-deficient mice have defects in pancreatic β cells several weeks after birth, suggesting a role for PERK-mediated translational control in protecting secretory cells from ER stress (4). PERK activation during ER stress correlates with autophosphorylation of its cytoplasmic kinase domain (1-3). Phosphorylation of PERK at Thr980 serves as a marker for its activation status.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Sec61 translocon is a channel complex located on the endoplasmic reticulum (ER) membrane to mediate membrane protein insertion into the organelle (1). There are three components in the complex, Sec61A, Sec61B, and Sec61G (2). Sec61A is the main component of the channel on the ER membrane and directly contacts nascent synthesized polypeptide TMD (transmembrane domain) for insertion (3). Sec61G functions in stablizing the channel (3). In addition to TMD insertion, Sec61 translocon has also been shown to be involved in ER calcium leakage (4,5). Both Bip and calmodulin can inhibit this leakage by their interaction with Sec61A (6,7). Sec61B has no obvious function related to target protein ER membrane insertion, but is involved in other vesicle trafficking processes such as EGFR and Her2 trafficking from the cytosol to nucleus (8,9), Gurken trafficking from Golgi to plasma membrane (10), and copper-transporting ATPase membrane distribution (11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Activating Transcription Factor-6 (ATF-6) is a transmembrane glycoprotein of the endoplasmic reticulum (ER). Upon accumulation of improperly folded proteins in the ER, ATF-6 is cleaved liberating a 50 kDa amino-terminal fragment that translocates to the nucleus (1, 2). There, ATF-6 activates transcription of ER chaperones and components of ER-associated degradation such as GRP78, XBP-1, and CHOP (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ca2+ is a key second messenger in many intracellular signaling pathways. Ca2+ signals control many cellular functions ranging from short-term responses such as contraction and secretion to longer-term regulation of cell growth and proliferation (1,2). Stromal interaction molecules (STIMs) function as Ca2+ sensors that detect changes in Ca2+ content in intracellular Ca2+ stores (3). STIM1 is conserved, ubiquitously expressed, and functions as an endoplasmic reticulum (ER) Ca2+ sensor that migrates from the ER Ca2+ store to the plasma membrane where it activates calcium-release-activated calcium (CRAC) channels when the ER Ca2+ store is low (4). STIM1 is a potential tumor suppressor; defects in STIM1 may cause rhabdomyosarcoma and rhabdoid tumors (5). STIM1 can either homodimerize or form heterodimers with STIM2. STIM2 possesses a high sequence identity to STIM1 and can function as an inhibitor of STIM1-mediated plasma membrane store-operated Ca2+ entry (6). However, further investigation is required to elucidate the true physiological function of STIM2.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Synoviolin-1 (SYVN1/HRD1) is a RING-type E3 ubiquitin-protein ligase and major component of the endoplasmic reticulum (ER) quality control system that is involved in the ubiquitin-dependent degradation of misfolded proteins (1). SYVN1 is a multispanning ER membrane protein whose expression is upregulated at the protein level under conditions that promote ER stress (1-4). Research studies have shown that SYVN1 is an anti-apoptotic factor that is implicated in the pathogenesis of arthropathy by promoting synovial hyperplasia (5). Furthermore, gene-targeting studies have demonstrated that SYVN1 expression is indispensable for embryogenesis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Sec61 translocon is a channel complex located on the endoplasmic reticulum (ER) membrane to mediate membrane protein insertion into the organelle (1). There are three components in the complex, Sec61A, Sec61B, and Sec61G (2). Sec61A is the main component of the channel on the ER membrane and directly contacts nascent synthesized polypeptide TMD (transmembrane domain) for insertion (3). Sec61G functions in stablizing the channel (3). In addition to TMD insertion, Sec61 translocon has also been shown to be involved in ER calcium leakage (4,5). Both Bip and calmodulin can inhibit this leakage by their interaction with Sec61A (6,7). Sec61B has no obvious function related to target protein ER membrane insertion, but is involved in other vesicle trafficking processes such as EGFR and Her2 trafficking from the cytosol to nucleus (8,9), Gurken trafficking from Golgi to plasma membrane (10), and copper-transporting ATPase membrane distribution (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: VCP-interacting membrane protein (VIMP, selenoprotein S) is a putative reductase and endoplasmic reticulum (ER)-resident protein involved in the ER-associated degradation (ERAD) pathway (1,2). Research studies indicate that VIMP may play a protective role against inflammation and reduce ER-stress (3). The VIMP protein is a single-pass, transmembrane protein that recruits the cytosolic p97/VCP AAA-ATPase and its cofactors, UFD1 and NPL4, to the ER membrane (4). An ER membrane complex containing Derlin-1 and VIMP forms a critical node in the ERAD machinery and links substrate recognition in the ER lumen with the retrotranslocation function of the p97/VCP AAA-ATPase in the cytosol (1,4). Polymorphisms in the corresponding VIMP gene are associated with spontaneous preterm births and cardiovascular disease risk (5,6) while other studies do not support a correspondence between VIMP polymorphisms and inflammatory disorders (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Dog, Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Autocrine motility factor receptor (AMFR/gp78) is a putative seven transmembrane domain G protein-coupled receptor that functions, in part, at the cell surface as a cytokine receptor for autocrine motility factor/phosphoglucose isomerase (AMF/PGI). AMFR is also localized to an intracellular mitochondria-associated smooth ER domain where it functions as an E3 ubiquitin ligase (1). AMFR function, as both a cytokine receptor and ubiquitin ligase, is linked to a variety of cellular signaling cascades associated with metastasis development and increased invasiveness. AMFR was initially proposed to be a RING-H2 E3 ubiquitin ligase after sequence analysis identified a catalytic RING finger and CUE motif, which are responsible for ubiquitin ligase activity and ubiquitin binding, respectively (2,3). Indeed, AMFR is a key component and amongst the best characterized ubiquitin ligases of the endoplasmic reticulum associated degradation (ERAD) machinery, a process involving recognition of misfolded proteins, ubiquitination, deglycosylation, retro-translocation to the cytosol, and targeting to the proteasome (4). Recent studies have shown that AMFR plays an important role in cholesterol homeostasis via the sterol-mediated ubiquitination of HMG-CoA reductase and its cofactor Insig-1 (5,6). Furthermore, AMFR has been implicated in the degradation of apolipoprotein B100 (7). It was recently reported that AMFR degrades the metastasis suppressor KAI-1/CD-82, representing the first evidence that AMFR ubiquitin ligase activity is involved in metastasis development (8). Increased expression of AMFR correlates with a high incidence of recurrence and reduced survival in patients with bladder, colorectal, and gastric cancers (9-11).