20% off purchase of 3 or more products* | Learn More >>

Human Positive Regulation of Transforming Growth factor-beta1 Production

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The adhesive glycoprotein thrombospondin-1 (THBS1, TSP1) localizes to the extracellular matrix (ECM) and mediates interactions between cells and the ECM and among cells. Thrombospondin-1 is a multi-domain, glycosylated protein that interacts with a wide variety of extracellular targets, including matrix metalloproteinases (MMPs), collagens, cell receptors, growth factors, and cytokines (1). The protein structure of THBS1 includes an amino-terminal laminin G-like domain, a von Willebrand factor-binding domain, and multiple thrombospondin (TSP) repeated sequences designated as type I, type II, or type III repeats. Each thrombospondin domain interacts with a distinct type of cell surface ligands or protein targets. The amino-terminal domain interacts with aggrecan, heparin, and integrin proteins. Type I TSP repeats interact with MMPs and CD36, while carboxy-terminal repeats bind the thrombospondin receptor CD47 (1). Through these interactions, THBS1 exerts diverse effects on different signaling pathways, such as VEGF receptor/NO signaling, TGFβ signaling, and the NF-κB pathway (2-5). Thrombospondin-1 is an important regulator of many biological processes, including cell adhesion/migration, apoptosis, angiogenesis, inflammation, vascular function, and cancer development (2-5). The activity of thrombospondin-1 is mainly regulated by extracellular proteases. The metalloproteinase ADAMTS1 cleaves thrombospondin, resulting in the release of peptides with anti-angiogenic properties. Elastase and plasmin proteases degrade the THBS1 protein and down regulate its activity (6). As THBS1 is an important protein inhibitor of angiogenesis, the development of thrombospondin-based compounds and their use in therapeutic studies may provide a beneficial approach to the treatment of cancer (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).FoxP3 is crucial for the development of T cells with regulatory properties (Treg) (6). Mutations in FoxP3 are associated with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX) (7), while overexpression in mice causes severe immunodeficiency (8). Research studies have shown that FoxP3 functions as a tumor suppressor in several types of cancer (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).FoxP3 is crucial for the development of T cells with regulatory properties (Treg) (6). Mutations in FoxP3 are associated with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX) (7), while overexpression in mice causes severe immunodeficiency (8). Research studies have shown that FoxP3 functions as a tumor suppressor in several types of cancer (9-11).

$448
50 sections
1 Kit
The PD-L1, FoxP3, CD8α Multiplex IHC Antibody Panel enables researchers to simultaneously detect these targets in paraffin-embedded tissues using tyramide signal amplification. Each antibody in the panel has been validated for this approach. For recommended staining conditions optimized specifically for this antibody panel please refer to Table 1 on the Data Sheet.
REACTIVITY
Human

Background: The field of cancer immunotherapy is focused on empowering the immune system to fight cancer. This approach has seen recent success in the clinic with targeting immune checkpoint control proteins, such as PD-1 (1,2). Despite this success, clinical biomarkers that predict response to therapeutic strategies involving PD-1 receptor blockade are still under investigation (3-5). While PD-L1 expression has been linked with an increased likelihood of response to anti-PD-1 therapy, research studies have shown that additional factors, such as tumor-immune infiltration and the ratio of effector to regulatory T cells within the tumor, could play a significant role in predicting treatment outcome (6-9).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).FoxP3 is crucial for the development of T cells with regulatory properties (Treg) (6). Mutations in FoxP3 are associated with immune dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome (IPEX) (7), while overexpression in mice causes severe immunodeficiency (8). Research studies have shown that FoxP3 functions as a tumor suppressor in several types of cancer (9-11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: GATA proteins comprise a group of transcription factors that are related by the presence of conserved zinc finger DNA binding domains, which bind directly to the nucleotide sequence core element GATA (1-3). There are six vertebrate GATA proteins, designated GATA-1 to GATA-6 (3).

$108
250 PCR reactions
500 µl
SimpleChIP® Human GATA-6 Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the human GATA-6 promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology. The GATA-6 gene promoter is bivalent in stem cells, containing both histone H3 tri-methyl Lys4 and tri-methyl Lys27 epigenetic marks. When the GATA-6 gene is activated during endoderm development, the promoter becomes monovalent, as the histone H3 tri-methyl Lys27 mark is removed and the tri-methyl Lys4 mark is retained.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated GATA-6 (D61E4) XP® Rabbit mAb #26452.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: GATA proteins comprise a group of transcription factors that are related by the presence of conserved zinc finger DNA binding domains, which bind directly to the nucleotide sequence core element GATA (1-3). There are six vertebrate GATA proteins, designated GATA-1 to GATA-6 (3).