Microsize antibodies for $99 | Learn More >>

Monkey Removal of Superoxide Radicals

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Manganese superoxide dismutase (MnSOD or SOD2) is a mitochondrial detoxification enzyme that catalyzes the conversion of superoxide to hydrogen peroxide (1,2). Hydrogen peroxide is then decomposed to water by catalase, glutathione peroxidase, or peroxiredoxins (2). MnSOD/SOD2 and other enzymes involved in antioxidant defense protect cells from reactive oxygen species (ROS) (2). Calorie restriction leads to SIRT3-mediated deacetylation of MnSOD/SOD2 and the subsequent increase of its antioxidant activity (3). MnSOD/SOD2 also plays an essential role in mediating the protective effect of mTOR inhibition to reduce epithelial stem cell senescence (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Manganese superoxide dismutase (MnSOD or SOD2) is a mitochondrial detoxification enzyme that catalyzes the conversion of superoxide to hydrogen peroxide (1,2). Hydrogen peroxide is then decomposed to water by catalase, glutathione peroxidase, or peroxiredoxins (2). MnSOD/SOD2 and other enzymes involved in antioxidant defense protect cells from reactive oxygen species (ROS) (2). Calorie restriction leads to SIRT3-mediated deacetylation of MnSOD/SOD2 and the subsequent increase of its antioxidant activity (3). MnSOD/SOD2 also plays an essential role in mediating the protective effect of mTOR inhibition to reduce epithelial stem cell senescence (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Apolipoproteins are plasma lipoproteins that function as transporters of lipids and cholesterol in the circulatory system. Chylomicrons are a fundamental class of apolipoproteins containing very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL) (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Prdx1 belongs to a family of non-seleno peroxidases that function as H2O2 scavengers. All 6 Prdx isoforms share a conserved N-terminal cysteine (Cys51) that is oxidized by H2O2 to form cysteine-sulfenic acid (Cys51-SOH) and, in turn, reacts with Cys172-SH of another Prdx protein, forming a disulfide dimer and protecting it from degradation (1-3). Abnormally high levels of H2O2 cause Prdx1 to form an oligomeric chaperone that loses its peroxidase activity (4). Prdx family members have been reported to bind to JNK and c-Abl and regulate their kinase activity (5,6). Prdx1 was shown to bind to PTEN and regulate its phosphatase activity in conditions of mild or no cellular stress, hence preventing Akt-driven transformation by protecting PTEN from oxidation-induced inactivation (7).