Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Classical Pathway

Also showing Monoclonal Antibody Western Blotting Classical Pathway

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Decay-accelerating factor (DAF/CD55) is a GPI-linked plasma membrane glycoprotein normally expressed on the surface of vascular endothelial and hematopoietic cells, which are continuously exposed to autologous complement components. In conjunction with other membrane complement regulatory proteins (CD35, CD46, and CD59), DAF/CD55 protects healthy cells from inappropriate complement-mediated lysis (1). DAF/CD55 inhibits activation of the complement cascade by promoting membrane dissociation and inactivation of C3 convertase, which inhibits amplification of the classical and alternative complement cascades (2). Research studies have demonstrated that DAF/CD55 is overexpressed in a variety of solid and liquid tumors, which functions to protect tumor cells from complement-mediated attack (3,4). Given its ability to disable the complement cascade and facilitate immune evasion by tumor cells, DAF/CD55 has received attention as a potential therapeutic target for the treatment of human malignancies. CD55 deficiency is also linked to human disease. The inability to express CD55 on the surface of erythrocytes renders them highly susceptible to complement-mediated lysis, which contributes to the development of paroxymal noctural hemoglobinuria (PNH). PNH is characterized by hemolytic anaemia, pancytopenia, and venous thrombosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Decay-accelerating factor (DAF/CD55) is a GPI-linked plasma membrane glycoprotein normally expressed on the surface of vascular endothelial and hematopoietic cells, which are continuously exposed to autologous complement components. In conjunction with other membrane complement regulatory proteins (CD35, CD46, and CD59), DAF/CD55 protects healthy cells from inappropriate complement-mediated lysis (1). DAF/CD55 inhibits activation of the complement cascade by promoting membrane dissociation and inactivation of C3 convertase, which inhibits amplification of the classical and alternative complement cascades (2). Research studies have demonstrated that DAF/CD55 is overexpressed in a variety of solid and liquid tumors, which functions to protect tumor cells from complement-mediated attack (3,4). Given its ability to disable the complement cascade and facilitate immune evasion by tumor cells, DAF/CD55 has received attention as a potential therapeutic target for the treatment of human malignancies. CD55 deficiency is also linked to human disease. The inability to express CD55 on the surface of erythrocytes renders them highly susceptible to complement-mediated lysis, which contributes to the development of paroxymal noctural hemoglobinuria (PNH). PNH is characterized by hemolytic anaemia, pancytopenia, and venous thrombosis (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Clusterin (CLU, apolipoprotein J) is a multifunctional glycoprotein that is expressed ubiquitously in most tissues. Clusterin functions as a secreted chaperone protein that interacts with and stabilizes stress-induced proteins to prevent their precipitation (1,2). Research studies show that clusterin plays a protective role in Alzheimer’s disease by sequestering amyloid β(1-40) peptides to form long-lived, stable complexes, which prevents amyloid fibril formation (3-5).In addition to the secreted protein, several intracellular isoforms are localized to the nucleus, mitochondria, cytoplasm, and ER. The subcellular distribution of these multiple isoforms leads to the diversity of clusterin functions. Additional studies report that clusterin is involved in membrane recycling, cell adhesion, cell proliferation, apoptosis, and tumor survival (6-9). The clusterin precursor is post-translationally cleaved into the mature clusterin α and clusterin β forms. Clusterin α and β chains create a heterodimer through formation of disulfide bonds (10).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: C1QBP, also referred to as p32, p33, gC1q receptor (gC1qR), and hyaluronic acid binding protein 1 (HABP1), was originally identified via its binding interactions with Splicing Factor (SF-2) (1). Multiple, diverse binding partners of C1QBP were subsequently identified, including the globular heads of complement component C1q, hyaluronic acid, selected protein kinases (2), the tumor suppressor ARF (3-5), and multiple antigens of bacterial and viral origin (6). Research studies have shown that C1QBP is overexpressed in a number of cancer cell types (7), and has been implicated in the Warburg effect, whereby cancer cells shift their metabolism from oxidative phosphorylation to glycolysis (7). C1QBP has also been shown to inhibit the Mitochondrial Permeability Transition (MPT) pore, possibly serving a protective function against damage from oxidative stress (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Clusterin (CLU, apolipoprotein J) is a multifunctional glycoprotein that is expressed ubiquitously in most tissues. Clusterin functions as a secreted chaperone protein that interacts with and stabilizes stress-induced proteins to prevent their precipitation (1,2). Research studies show that clusterin plays a protective role in Alzheimer’s disease by sequestering amyloid β(1-40) peptides to form long-lived, stable complexes, which prevents amyloid fibril formation (3-5).In addition to the secreted protein, several intracellular isoforms are localized to the nucleus, mitochondria, cytoplasm, and ER. The subcellular distribution of these multiple isoforms leads to the diversity of clusterin functions. Additional studies report that clusterin is involved in membrane recycling, cell adhesion, cell proliferation, apoptosis, and tumor survival (6-9). The clusterin precursor is post-translationally cleaved into the mature clusterin α and clusterin β forms. Clusterin α and β chains create a heterodimer through formation of disulfide bonds (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Complement Regulatory Protein; Membrane Cofactor Protein (CD46) is a type 1 membrane protein that plays an important inhibitory role in the complement system (1). CD46 exhibits a cofactor activity that promotes inactivation of C3b and C4b by serum factor 1, thereby protecting host (self) cells from complement-dependent cytotoxicity (1,2). The importance of CD46 to complement regulation is underscored by the observation that genetic loss of CD46 leads to development of atypical hemolytic-uremic syndrome (aHUS), a disease characterized by uncontrolled complement activation (2,3). In addition to its role in complement inactivation, CD46 can function as a receptor for selected bacteria and viruses (4), and is reportedly required for proper fusion of spermatozoa to the oocyte membrane during fertilization (5). CD46 is implicated in the development and/or progression of selected cancer types. For example, research studies show elevated CD46 expression in medulloblastoma tumor samples (6), while CD46 expression has been linked with poor prognosis in breast cancer (7). It has been suggested that upregulation of CD46 may serve to protect cancer cells from complement-dependent cytotoxicity, thereby evading destruction by the immune system (8,9).