20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Glucose 6-phosphate Metabolic Process

Also showing Monoclonal Antibody Western Blotting Glucose 6-phosphate Metabolic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first, and rate-limiting, step of the pentose phosphate pathway (1). The NADPH generated from this reaction is essential to protect cells from oxidative stress (1). Research studies have shown that p53 interacts with G6PD and inhibits its activity, therefore suppressing glucose consumption through the pentose phosphate pathway (2). In cancer cells with p53 mutations, the increased glucose consumption is directed towards increased biosynthesis, which is critical for cancer cell proliferation (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Hexokinase catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis. Four distinct mammalian hexokinase isoforms, designated as hexokinase I, II, III, and IV (glucokinase), have been identified. Hexokinases I, II, and III are associated with the outer mitochondrial membrane and are critical for maintaining an elevated rate of aerobic glycolysis in cancer cells (Warburg Effect) (1) in order to compensate for the increased energy demands associated with rapid cell growth and proliferation (2,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Hexokinase catalyzes the conversion of glucose to glucose-6-phosphate, the first step in glycolysis. Four distinct mammalian hexokinase isoforms, designated as hexokinase I, II, III, and IV (glucokinase), have been identified. Hexokinases I, II, and III are associated with the outer mitochondrial membrane and are critical for maintaining an elevated rate of aerobic glycolysis in cancer cells (Warburg Effect) (1) in order to compensate for the increased energy demands associated with rapid cell growth and proliferation (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose-6-phosphate in glycolysis (1). There are three isozymes: muscle-type, liver-type, and platelet-type (2,3). Platelet-type phosphofructokinase (PFKP) is expressed in various cell types (4,5). Research studies have shown that genetic variations in PFKP are associated with individuals born small for gestational age that are prone to obesity and diabetes later in adulthood (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose-6-phosphate in glycolysis (1). There are three isozymes: muscle-type, liver-type, and platelet-type (2,3). Platelet-type phosphofructokinase (PFKP) is expressed in various cell types (4,5). Research studies have shown that genetic variations in PFKP are associated with individuals born small for gestational age that are prone to obesity and diabetes later in adulthood (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Fructose-1,6-bisphosphatase 1 (FBP1 or FBPase 1), a rate limiting enzyme in gluconeogenesis, catalyzes the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate (1). Inhibition of FBP1 expression in basal-like breast cancer (BLBC) cells leads to metabolic reprogramming, including enhanced glycolysis, which leads to increased glucose uptake, biosynthesis of macromolecules, and activation of PKM2 (1). This metabolic reprogramming endows tumor cells with cancer stem cell (CSC)-like properties, thereby increasing their tumorigenicity (1). Depletion of FBP1 was also reported in more than 600 clear cell renal cell carcinoma (ccRCC) tumors, suggesting that FBP1 may inhibit ccRCC tumor progression (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fructose-1,6-bisphosphatase 1 (FBP1 or FBPase 1), a rate limiting enzyme in gluconeogenesis, catalyzes the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate (1). Inhibition of FBP1 expression in basal-like breast cancer (BLBC) cells leads to metabolic reprogramming, including enhanced glycolysis, which leads to increased glucose uptake, biosynthesis of macromolecules, and activation of PKM2 (1). This metabolic reprogramming endows tumor cells with cancer stem cell (CSC)-like properties, thereby increasing their tumorigenicity (1). Depletion of FBP1 was also reported in more than 600 clear cell renal cell carcinoma (ccRCC) tumors, suggesting that FBP1 may inhibit ccRCC tumor progression (2).