Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Immunofluorescence Immunocytochemistry Hypothalamus Development

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: ETS-1 is a proto-oncoprotein that belongs to the E26 Transformation-specific Sequence (ETS) family of transcription factors that share a unique and highly conserved DNA binding domain (1). ETS-1 plays important roles in vascular development and angiogenesis (2), and vascular inflammation and remodeling (3). The target genes of ETS-1 include receptor tyrosine kinases, MMPs, and cell adhesion molecules (4-6). In addition, ETS-1 is involved in regulation of energy metabolism in cancer cells (7). ETS-1 activity is regulated by two different types of phosphorylation sites. While phosphorylation at a cluster of serine residues in the exon VII domain by CaMKII inhibits ETS-1 DNA binding activity (8), phosphorylation at its Thr38 site by Ras activates ETS-1 (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: DSS-AHC critical region on the X chromosome protein 1 (DAX1) is an orphan nuclear receptor encoded by the nuclear receptor subfamily 0 group B member 1 (NR0B1) gene. DAX1 possesses an atypical DNA binding domain that allows it to form heterodimeric complexes with DNA binding partners and repress transcriptional activity (1,2). During development, DAX1 is important for establishment of the hypothalamic-pituitary-adrenal gonadal axis. The receptor is essential for development of several important hormone-producing organs that determine this axis, including the adrenal glands, pituitary, hypothalamus, and the male and female reproductive organs (3,4). Research studies suggest that DAX1 plays a role in maintenance of pluripotency in embryonic stem cells (5,6). Loss of DAX1 function through deletion or mutation results in adrenal insufficiency and hypogonadotropic hypogonadism (7), while duplication of the NR0B1 gene on the X-chromosome causes dosage-sensitive sex reversal (8).