Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Immunofluorescence Immunocytochemistry Taurine Metabolic Process

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Mammalian cells synthesize serine de novo by diverting a portion of the glycolytic intermediate 3-phosphoglycerate into the phosphorylated pathway of serine synthesis. This shift supports anabolism by providing precursors for the biosynthesis of proteins, nucleotides, creatine, porphyrins, phospholipids, and glutathione. Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the serine biosynthesis pathway by converting 3-phosphoglycerate into phosphohydroxy pyruvate (1).Research studies demonstrate that an increase in serine biosynthesis supports growth and proliferation of cancer cells (2-4), which is supported by amplification and overexpression of PHGDH in a subset of melanoma and breast cancers (5,6). Suppression of PHGDH expression in cell lines with elevated PHGDH levels causes a strong decrease in cell proliferation and inhibits tumor growth in vivo (5). Additional evidence suggests that PHGDH interacts with and stabilizes FoxM1, which promotes the proliferation, invasion, and tumorigenicity of glioma cells (7).