20% off purchase of 3 or more products* | Learn More >>

Monoclonal Antibody Immunoprecipitation Sphingolipid Metabolic Process

Also showing Monoclonal Antibody Immunoprecipitation Sphingolipid Biosynthetic Process

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Sphingosine kinases (SPHKs) catalyze the phosphorylation of sphingosine to form sphingosine-1-phosphate (S1P), a lipid mediator with both intra- and extracellular functions. Together with other sphingolipid metabolizing enzymes, SPHKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P (1-4). Two distinct SPHK isoforms, SPHK1 and SPHK2, have been cloned and characterized (5,6). SPHK1 and SPHK2 are highly conserved and diversely expressed (7,8). The SPHKs are activated by G protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli (9-12). The molecular mechanisms by which SPHK1 and SPHK2 are specifically regulated are complex and only partially understood.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Sphingosine kinases (SPHKs) catalyze the phosphorylation of sphingosine to form sphingosine-1-phosphate (S1P), a lipid mediator with both intra- and extracellular functions. Together with other sphingolipid metabolizing enzymes, SPHKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P (1-4). Two distinct SPHK isoforms, SPHK1 and SPHK2, have been cloned and characterized (5,6). SPHK1 and SPHK2 are highly conserved and diversely expressed (7,8). The SPHKs are activated by G protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli (9-12). The molecular mechanisms by which SPHK1 and SPHK2 are specifically regulated are complex and only partially understood.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Activation of PKC is one of the earliest events in a cascade leading to a variety of cellular responses such as secretion, gene expression, proliferation and muscle contraction (1,2). Protein kinase D (PKD), also called PKCμ, is a serine/threonine kinase whose activation is dependent on the phosphorylation of two activation loop sites, Ser744 and Ser748, via a PKC-dependent signaling pathway (3-5). In addition to the two activation loop sites, the carboxy-terminal Ser916 has been identified as an autophosphorylation site for PKD/PKCμ. Phosphorylation at Ser916 correlates with PKD/PKCμ catalytic activity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).