Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Negative Regulation of Transcription

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Oct-1 (POU2F1) is a ubiquitously expressed, octamer-binding transcription factor containing a POU domain with a homeobox subdomain (1). Oct-1 has been shown to interact with several transcription factors in mediating specific gene expression, including SNAPc (2), OBF-1 (a B-cell transcriptional coactivator protein) (3), TFIIB (4), and TBP (TATA-box-binding protein) (5). Its POU DNA-binding domain allows Oct-1 the flexibility to facilitate the binding and recruitment of several tissue-specific cofactors to either positively or negatively regulate a variety of genes, exerting an important role in development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The HIV-1 viral protein R (Vpr)-binding protein (VPRBP, DCAF1) is a substrate-specific adaptor for the CUL4-based ubiquitin ligase complex that consists of CUL4A, RBX1, and DDB1 (1). VPRBP protein structure contains a central LIS1 homology (LisH) motif responsible for dimerization, and two carboxy-terminal WD-40 motifs involved in Vpr and DDB1 binding (2-4). Research studies demonstrate that VPRBP plays a role in hepatic lipid metabolism by promoting the ubiquitin-dependent proteasomal degradation of the TR4 nuclear receptor, which is involved in lipid homeostasis (5). The VPRBP protein plays a role in mammalian germ cell development through regulation of TET methylcytosine dioxygenase activation (6). Additional studies show that VPRBP exhibits kinase activity and phosphorylates histone H2A at Ser120, which blocks tumor suppressor gene transcription (7). The tumor suppressor Merlin/NF2 inhibits tumorigenesis through interaction with and suppression of the CUL4A-RBX1-DDB1-VPRBP complex (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Frizzled (Fzd) belongs to the seven transmembrane-spanning G-protein-coupled receptor (GPCR) superfamily (1). Fzds have a large extracellular N-terminal region containing a cysteine-rich domain (CRD), which is involved in binding to Wnt proteins (1,2). The intracellular C-terminus binds to the PDZ domain of Dvl proteins, a major signaling component downstream of Fzd (3). Wnt proteins bind to Fzd and the co-receptors LRP5 or LPR6, and activate Wnt/β-catenin pathway through inhibiting phosphorylation of β-catenin by GSK3-β (4,5). In addition to this canonical Wnt/β-catenin pathway, some Wnt proteins can also activate the Fzd/Ca2+ pathway and Fzd/PCP (planar cell polarity) pathway (6,7). The mammalian Fzd subfamily has 10 members (Fzd1 to Fzd10) and they may mediate signaling through different pathways (8). Some Fzds can also bind to other secreted proteins, like Norrin and R-Spondin (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Chicken ovalbumin upstream promoter transcription factor (COUP-TF) belongs to the NR2 subfamily of the nuclear hormone receptor family (1). COUP-TFI and COUP-TFII are two of the well-characterized members in the NR2 subfamily. These two members are highly conserved in their two zinc-finger DNA binding domains (DBD) and the ligand binding domain (LBD), and function as repressors or activators of downstream target genes to regulate different biological processes (1-3). COUP-TFI and II bind to 5'-AGGTCA-3' motif palindromes, either directly or indirectly, through heterodimer formation with other proteins (e.g. RXRs) to regulate downstream target gene expression (4,5). COUP-TFI is involved in neuronal development, tissue patterning, and differentiation (6-8). COUP-TFII has been shown to be involved in angiogenesis, glucose homeostasis, and mesenchymal cell commitment (9-12).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Brachyury (D2Z3J) Rabbit mAb #81694.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Brachyury protein, encoded by the T gene, is a transcription factor that is vital for the formation of posterior mesoderm and axial development during vertebrate embryogenesis (1). In the mouse, brachyury is necessary for mesodermal morphogenetic cell movements during gastrulation. Brachyury mutant mice die in utero and display deficient mesoderm formation including an abnormal notochord, missing posterior somites, and a reduced allantois (2). Human brachyury is expressed in the notochord, as well as in chordoma tumors that occur along the spine, making it a good marker for notochord and notochord-derived tumors (3,4). A common polymorphism in the human T gene has also been shown to be associated with development of the multifactorial neural tube defect, spina bifida (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Brachyury protein, encoded by the T gene, is a transcription factor that is vital for the formation of posterior mesoderm and axial development during vertebrate embryogenesis (1). In the mouse, brachyury is necessary for mesodermal morphogenetic cell movements during gastrulation. Brachyury mutant mice die in utero and display deficient mesoderm formation including an abnormal notochord, missing posterior somites, and a reduced allantois (2). Human brachyury is expressed in the notochord, as well as in chordoma tumors that occur along the spine, making it a good marker for notochord and notochord-derived tumors (3,4). A common polymorphism in the human T gene has also been shown to be associated with development of the multifactorial neural tube defect, spina bifida (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: FoxD3 is a member of the Forkhead Box family and is characterized by a winged-helix DNA-binding structure and the important role it plays in embryonic development (1). This transcriptional regulator is required for the maintenance of pluripotency in the pre-implantation and peri-implantation stages of mouse embryonic development (2) and is also required for trophoblast formation (3). FoxD3 is required for the maintenance of the mammalian neural crest; FoxD3(-/-) mouse embryos fail around the time of implantation with loss of neural crest-derived structures (4). FoxD3 also forms a regulatory network with Oct-4 and NANOG to maintain the pluripotency of ES cells (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Fos family of nuclear oncogenes includes c-Fos, FosB, Fos-related antigen 1 (FRA1), and Fos-related antigen 2 (FRA2) (1). While most Fos proteins exist as a single isoform, the FosB protein exists as two isoforms: full-length FosB and a shorter form, FosB2 (Delta FosB), which lacks the carboxy-terminal 101 amino acids (1-3). The expression of Fos proteins is rapidly and transiently induced by a variety of extracellular stimuli including growth factors, cytokines, neurotransmitters, polypeptide hormones, and stress. Fos proteins dimerize with Jun proteins (c-Jun, JunB, and JunD) to form Activator Protein-1 (AP-1), a transcription factor that binds to TRE/AP-1 elements and activates transcription. Fos and Jun proteins contain the leucine-zipper motif that mediates dimerization and an adjacent basic domain that binds to DNA. The various Fos/Jun heterodimers differ in their ability to transactivate AP-1 dependent genes. In addition to increased expression, phosphorylation of Fos proteins by Erk kinases in response to extracellular stimuli may further increase transcriptional activity (4-6). Phosphorylation of c-Fos at Ser32 and Thr232 by Erk5 increases protein stability and nuclear localization (5). Phosphorylation of FRA1 at Ser252 and Ser265 by Erk1/2 increases protein stability and leads to overexpression of FRA1 in cancer cells (6). Following growth factor stimulation, expression of FosB and c-Fos in quiescent fibroblasts is immediate, but very short-lived, with protein levels dissipating after several hours (7). FRA1 and FRA2 expression persists longer, and appreciable levels can be detected in asynchronously growing cells (8). Deregulated expression of c-Fos, FosB, or FRA2 can result in neoplastic cellular transformation; however, Delta FosB lacks the ability to transform cells (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: DNA damage checkpoints are critical for regulated repair of damaged DNA and genome maintenance. CtIP/RBBP8 (CtBP-interacting protein), initially characterized as a binding partner for the trancription factor CtBP, has emerged as a regulator of both cell cycle progression and repair of DNA double strand breaks (DSB). Along with the DSB-sensing MRN complex (MRE11-RAD50-NBS1), CtIP functions in the generation of single stranded DNA at DSBs, a process required for signaling to DNA repair machinery (reviewed in 1). CtIP is thought to be critical in the transition between sensing of DSBs and repair by homologous recombination (HR) (2,3).In addition to HR, DSBs can also be repaired through nonhomologous end joining (NHEJ), and CtIP has been shown to have a role in signaling to the NHEJ pathway independently of its function in DSB end resection (4).CtIP is also involved in cellular tolerence of topoisomerase inhibitors camptothecin and etoposide, which are used to treat cancer through their ability to introduce DSBs in cycling cells (5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated PAX5 (D19F8) XP® Rabbit mAb #8970.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CDX2, a homeobox domain-containing transcription factor, is a master regulator of the trophoectoderm, the layer that gives rise to extra-embryonic tissues in mammalian development (1). CDX2 is also involved in intestinal development (2), and gain of expression or loss of expression has been associated with various human malignancies such as Barret Esophagus (3) and colorectal cancer (4,5). Mouse embryonic stem cells deficient in CDX2 display limited hematopoietic progenitor development and altered Hox gene expression (6), pointing to a role for CDX2 in Hox gene regulation. CDX2 is also implicated in the aberrant expression of Hox genes in human AML cell lines (7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The breast cancer type 1 susceptibility protein (BRCA1) is an E3 ubiquitin ligase that functions in the maintenance of genome stability through regulation of the DNA damage response and DNA repair. BRCA1 protein forms at least three distinct complexes (BRCA1 A, B, and C) with other DNA repair proteins, and these interactions are vital for regulation of BRCA1 protein function. The BRCA1-RAP80 complex (BRCA1 A complex) includes RAP80, BRCC36, BRE, Abraxas, and NBA1 and functions in G2/M phase checkpoint control (reviewed in 1,2).The ubiquitously expressed receptor-associated protein 80 (RAP80, UIMC1) is required for recruitment and stability of the BRCA1 A complex at sites of DNA damage (3). Research studies indicate that the absence of RAP80 in cells results in increased sensitivity to the topoisomerase II inhibitor etoposide (4). In the absence of functional RAP80, BRCA1 A complex function is suppressed and cells become more sensitive to DNA damage-induced genome instability (5,6). Phosphorylation of RAP80 by CDK1/Cyclin B at Ser177 regulates RAP80 function at the mitotic checkpoint (7). A naturally occurring in-frame deletion mutant within RAP80 likely alters RAP80 protein-protein interactions and is associated with an increase in chromosomal abnormalities (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Fos family of nuclear oncogenes includes c-Fos, FosB, Fos-related antigen 1 (FRA1), and Fos-related antigen 2 (FRA2) (1). While most Fos proteins exist as a single isoform, the FosB protein exists as two isoforms: full-length FosB and a shorter form, FosB2 (Delta FosB), which lacks the carboxy-terminal 101 amino acids (1-3). The expression of Fos proteins is rapidly and transiently induced by a variety of extracellular stimuli including growth factors, cytokines, neurotransmitters, polypeptide hormones, and stress. Fos proteins dimerize with Jun proteins (c-Jun, JunB, and JunD) to form Activator Protein-1 (AP-1), a transcription factor that binds to TRE/AP-1 elements and activates transcription. Fos and Jun proteins contain the leucine-zipper motif that mediates dimerization and an adjacent basic domain that binds to DNA. The various Fos/Jun heterodimers differ in their ability to transactivate AP-1 dependent genes. In addition to increased expression, phosphorylation of Fos proteins by Erk kinases in response to extracellular stimuli may further increase transcriptional activity (4-6). Phosphorylation of c-Fos at Ser32 and Thr232 by Erk5 increases protein stability and nuclear localization (5). Phosphorylation of FRA1 at Ser252 and Ser265 by Erk1/2 increases protein stability and leads to overexpression of FRA1 in cancer cells (6). Following growth factor stimulation, expression of FosB and c-Fos in quiescent fibroblasts is immediate, but very short-lived, with protein levels dissipating after several hours (7). FRA1 and FRA2 expression persists longer, and appreciable levels can be detected in asynchronously growing cells (8). Deregulated expression of c-Fos, FosB, or FRA2 can result in neoplastic cellular transformation; however, Delta FosB lacks the ability to transform cells (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) respectively (1,2). DUBs are categorized into five subfamilies-USP, UCH, OTU, MJD, and JAMM. Ubiquitin-specific protease 9, X-linked (USP9X) possesses a well-conserved catalytic domain with cysteine peptidase activity, which allows for cleavage of ubiquitin and polyubiquitin conjugates. USP9X is the mammalian homolog of the Drosophila fat-facets (faf) gene, which is essential for normal eye development and viability of the early fly embryo (3,4). While USP9X expression is also critical for normal mammalian development (5-7), many of its substrates are only beginning to be elucidated. There is mounting evidence that USP9X functions in the formation of epithelial cell-cell contacts through deubiquitination-dependent stabilization of molecules involved in maintaining the integrity of both adherens and tight junctions. Indeed, USP9X has been found to associate with AF-6, the β-catenin-E-cadherin complex, and EFA6 (8-11). Research studies have also demonstrated that USP9X is an integral component of the TGF-β/BMP signaling cascade by opposing TRIM33-mediated monoubiquitination of SMAD4 (12). USP9X is overexpressed in a variety of human cancers and contributes to enhanced cell survival, in part, through its ability to deubiquitinate and stabilize the Mcl-1 oncoprotein (13). There is some evidence, however, that suggests the role of USP9X in tumorigenesis is context dependent. Research studies have implicated USP9X in a tumor suppressor role during the early stages of pancreatic ductal adenocarcinoma (PDAC) and in an oncogenic role during advanced stages of PDAC (14,15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Western Blotting

Background: Activating transcription factor 3 (ATF-3) is a basic leucine zipper-type transcription factor belonging to the ATF/cAMP responsive element binding protein family. ATF-3 can form homodimers or heterodimers with other family members and depending on the cell types and promoter context, it can suppress or activate the transcription of its target genes (1,2). Expression of ATF-3 is induced by a variety of factors including cytokines, genotoxic agents, and physiological stress. For example, both metformin and high-density lipoprotein (HDL) can induce ATF-3 expression in macrophages (1,3-5). Research studies also indicate that ATF-3 can function as an oncogene or a tumor suppressor depending on the context (6,7).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Tripartite motif-containing protein 29 (TRIM29, ATDC) was isolated as a candidate gene by its ability to complement the radiosensitivity defect of an ataxia-telangiectasia (AT) cell line (1). This putative transcription regulator belongs to the TRIM (tripartite motif) protein family that is characterized by highly conserved amino-terminal RING finger, B-box, and coiled-coil domains. The TRIM29 protein binds and sequesters cytosolic p53, repressing expression of p53 target genes including p21 and Noxa by preventing p53 from entering the nucleus. Expression of TRIM29 inhibits p53 function and results in increased cell proliferation. (2). TRIM29 enhances tumor growth and metastasis in vivo and high TRIM29 levels are seen in most invasive pancreatic cancers. The oncogenic effect of TRIM29 appears to require β-catenin as expression of both proteins is elevated in pancreatic cancer cell lines and tissues (3).