Microsize antibodies for $99 | Learn More >>

Monoclonal Antibody Western Blotting Cognition

Also showing Monoclonal Antibody Immunoprecipitation Cognition

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: mGluR5, a metabotropic glutamate receptor, is a class C G protein-coupled receptor that signals through the Gaq/11-PLC-inositol 1,4,5 triphosphate pathway (1). mGluR5 is comprised of a large N-terminal extracellular domain, seven transmembrane domains, and a C-terminal intracellular domain. Glutamate binding to mGluR5 leads to an increase in intracellular calcium levels and stimulation of PKC activity (2). In neurons, mGluR5 is found in the post-synapse, in a complex with NMDA receptors, PSD-95, SHANK, and Homer (3). mGluR5 is also expressed in microglia and astrocytes (4). Neuronal mGluR5 has been shown to interact with amyloid beta oligomers, and mGluR5 antagonists exhibit neuroprotective effects (5) placing mGluR5 as a potential therapeutic target for Alzheimer’s disease. In glial cells, mGluR5 appears to play an anti-inflammatory role by negatively regulating the release of inflammatory factors (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CHD7 belongs to the chromodomain helicase DNA-binding (CHD) family of ATP-dependent chromatin remodeling proteins (1). The CHD family of proteins has been shown to play an important role in regulating gene expression by altering the chromatin structure at target genes (1,2). The nine members of the CHD family are characterized by the presence of two tandem chromodomains in the N-terminal region and an SNF2-like ATPase domain near the central region of the protein (2-4). The CHD proteins can be further divided into three subgroups based on the presence of additional conserved functional domains. CHD7 belongs to the third subgroup of CHD proteins together with CHD6, 8, and 9, which are distinguished by the presence of three conserved region (CR) domains, a switching-defective protein 3, adaptor 2, nuclear receptor co-repressor, transcription factor IIB (SANT) like domain, two brahma and kismet (BRK) domains, and a DNA binding domain (2). CHD7 regulates embryonic stem cell (ESC) specific gene expression together with ESC master regulators Oct-4, Sox2 and nanog, and is necessary for neural stem cell development and formation of the neural crest (5-7). Research studies have shown that CHD7 mutations are frequently found in patients with CHARGE syndrome (coloboma of the eye, heart defects, atresia of the choanae, retardation of growth/development, genital/urinary abnormalities, and ear abnormalities and deafness) (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CHMP2B is a component of the ESCRT III (endosomal sorting required for transport complex III) complex (1, 2). The ESCRT system is composed of the ESCRT-0, -I, -II, and -III complexes, which function sequentially to direct the transport of ubiquitinated transmembrane proteins into the intralumenal vesicles (ILVs), which will eventually mature into multivesicular bodies (MVBs). CHMP2B is a homolog of yeast Vps2, which functions in the ESCRT-II complex to change the initial spiral-structure of snf7 into membrane-sculpting helices for the final pinch off process (3). CHMP2B probably functions similarly in mammalian cells. Research studies show that manipulation of the ESCRT-III complex leads to accumulation of CHMP2B at the plasma membrane and overexpressed CHMP2B polymerizes into a tight helical structure that deforms the shape of associated plasma membrane (4).Research studies have shown that mutation of CHMP2B is associated with frontotemporal dementia, (5, 6). Studies have further shown that the dysfunction of mutant CHMP2B expression may disrupts the normal endo-autophagosome and endo-lysosome pathways and lead to neurodegenerative diseases (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neurofibromin is a Ras-specific GTPase activating protein (RasGAP), down-regulating Ras signaling (1). Studies have shown, that mutations in NF1 inhibit its activity, resulting in benign tumors such as neurofibromas, which may form along nerves throughout the body resulting in neurofibromatosis type 1 (NF1) (2). NF1 is one of the most common autosomal dominant diseases however it remains unclear how mutation of NF1 may lead to other features of NF1 (3). In addition, NF1 mutations occur in 5-10% of human sporadic malignancies such as glioblastomas, lung adenocarcinomas, melanomas, breast and ovarian cancers, and acute myeloid leukemias. Mutations in NF1 can cause resistance to therapies including chemotherapy and radiation therapy (3).