20% off purchase of 3 or more products* | Learn More >>

Mouse Negative Regulation of Mast Cell Activation

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Fer is a nonreceptor protein-tyrosine kinase of the Fes/Fps family. Like many other cytoplasmic tyrosine kinases, Fer contains a long amino-terminal domain, a central SH2 domain, and a carboxy-terminal kinase domain. Its amino-terminal domain is responsible for protein oligomerization as well as interaction with cytoskeletal proteins. Fer is ubiquitously expressed in a wide variety of cell and tissue types, and is localized to both cytoplasm and nucleus (1). Tyrosine kinase activity of Fer can be stimulated by growth factors and cytokines (2,3). After activation, Fer can further activate various downstream signaling components including Stat3 (3). Fer plays an important role in regulation of cell movement, oncogenesis and inflammation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The endocannabinoid system consists of the cannabinoid receptors, CB1 and CB2 receptors, the enzymes that produce and degrade the endogenous cannabinoid ligands (such as FAAH, DAG lipases, and MAG lipase), and the endocannabinoid ligands derived from the metabolism of arachidonic acid, 2-arachidonoylglycerol (2-AG) and anandamide (1-3). CB1 receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and harbors a large N-terminal extracellular domain, seven transmembrane domains, and a C-terminal intracellular tail. CB1 receptor is coupled to the Gai/o subunit of the G protein which inhibits adenylyl cyclases and regulates calcium and potassium ion channels (4). CB1 receptor is one of the most abundant GPCRs in the central nervous system. It has been show to play critical roles in the wiring of the brain during development (5), in neuronal plasticity (6), analgesia, drug abuse and metabolic homeostasis (7). In addition, CB1 receptor has been shown to interact with other GPCRs, to give rise to novel pharmacological and signaling heteromers with implication in diseases (8,9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Lyn, one of the Src family members, is predominantly expressed in hematopoietic cells (1). Two tyrosine residues have been reported to play a crucial role in the regulation of protein tyrosine kinases of the Src family. Autophosphorylation of Tyr396 (equivalent to Tyr416 of Src), located in the catalytic domain, correlates with enzyme activation. Csk-mediated phosphorylation of the carboxy-terminal Tyr507 (equivalent to Tyr527 of Src) inactivates the kinase. Tyrosine phosphorylation and activation of Lyn occurs upon association with cell surface receptors such as the B cell Ag receptor (BCR) and CD40 (2-4). Studies using knockout mice have shown that the net effect of Lyn deficiency is to render B cells hypersensitive to BCR stimulation (5-7), suggesting that the most critical role for Lyn in vivo is in the down-regulation of B cell responses. Lyn is also involved in controlling the migration and development of specific B cell populations (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Lyn, one of the Src family members, is predominantly expressed in hematopoietic cells (1). Two tyrosine residues have been reported to play a crucial role in the regulation of protein tyrosine kinases of the Src family. Autophosphorylation of Tyr396 (equivalent to Tyr416 of Src), located in the catalytic domain, correlates with enzyme activation. Csk-mediated phosphorylation of the carboxy-terminal Tyr507 (equivalent to Tyr527 of Src) inactivates the kinase. Tyrosine phosphorylation and activation of Lyn occurs upon association with cell surface receptors such as the B cell Ag receptor (BCR) and CD40 (2-4). Studies using knockout mice have shown that the net effect of Lyn deficiency is to render B cells hypersensitive to BCR stimulation (5-7), suggesting that the most critical role for Lyn in vivo is in the down-regulation of B cell responses. Lyn is also involved in controlling the migration and development of specific B cell populations (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Lyn, one of the Src family members, is predominantly expressed in hematopoietic cells (1). Two tyrosine residues have been reported to play a crucial role in the regulation of protein tyrosine kinases of the Src family. Autophosphorylation of Tyr396 (equivalent to Tyr416 of Src), located in the catalytic domain, correlates with enzyme activation. Csk-mediated phosphorylation of the carboxy-terminal Tyr507 (equivalent to Tyr527 of Src) inactivates the kinase. Tyrosine phosphorylation and activation of Lyn occurs upon association with cell surface receptors such as the B cell Ag receptor (BCR) and CD40 (2-4). Studies using knockout mice have shown that the net effect of Lyn deficiency is to render B cells hypersensitive to BCR stimulation (5-7), suggesting that the most critical role for Lyn in vivo is in the down-regulation of B cell responses. Lyn is also involved in controlling the migration and development of specific B cell populations (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rabex-5, also called RabGEF1 and RAP1, was identified as a guanine nucleotide exchange factor (GEF) for Rab5, a member of the Ras superfamily of small Rab GTPases (1). Rabex-5 generates the GTP-bound active form of Rab5 and forms a tight association with its effector protein Rabaptin-5 (2). This complex localizes to endosomal membranes where it functions as a key regulator of vesicular trafficking during early endocytosis (3,4). Rabex-5 is also monoubiquitinated and has ubiquitin ligase activity that regulates its recruitment to early endosomes (5,6). The conformational change between Rab5 GTP/GDP states is essential for its biological function as a rate limiting regulator at multiple steps during endocytosis (5). Through its control of endosomal trafficking and endocytosis, Rabex-5 has been shown to negatively regulate NGF-mediated neurite outgrowth (7) as well as FcεRI-dependent mast cell activation (8).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$327
50 tests
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry in human cells. CST expects that Phospho-Stat5 (Tyr694) (C71E5) Rabbit mAb (Alexa Fluor® 488) will display the same species cross-reactivity as the unconjugated antibody (Phospho-Stat5 (Tyr694) (C71E5) Rabbit mAb #9314).
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis of human cells. CST expects that Phospho-Stat5 (Tyr694) (C71E5) Rabbit mAb (Alexa Fluor® 647 Conjugate) will display the same species cross-reactivity as the unconjugated antibody (Phospho-Stat5 (Tyr694) (C71E5) Rabbit mAb #9314).
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Stat5 (Tyr694) (C71E5) Rabbit mAb #9314.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Stat5 is activated in response to a wide variety of ligands including IL-2, GM-CSF, growth hormone and prolactin. Phosphorylation at Tyr694 is obligatory for Stat5 activation (1,2). This phosphorylation is mediated by Src upon erythropoietin stimulation (3). Stat5 is constitutively active in some leukemic cell types (4). Phosphorylated Stat5 is found in some endothelial cells treated with IL-3, which suggests its involvement in angiogenesis and cell motility (5). Stat5a and Stat5b are independently regulated and activated in various cell types. For instance, interferon treatment predominantly activates Stat5a in U-937 cells and Stat5b in HeLa cells (6).