Microsize antibodies for $99 | Learn More >>

Mouse Protein Transporter Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins (1) and are divided into two subgroups: importin α and importin β. Importins mainly function in nuclear protein import and export (2,3). Importin β1 (also known as karyopherin β1, Kpnβ1, Kpnb1, or p97) plays a key role in the nuclear import process (1-3). Nuclear import via importin β1 association with adaptor importin α (also known as karyopherin α, or Kpnα) is an essential component of the classical nuclear localization signal (NLS) pathway (4). Importin α directly recognizes the NLS present in the cargo target, prompting complex formation with importin β1. The cargo:importin α:importin β1 complex is transported across the nuclear pore complex (NPC) into the nucleus, where it is dissociated by the binding of RanGTP (1-4). Nuclear import directly via importin β1 can also occur by importin β1 recognition of the cargo protein, bypassing importin α involvement. In both cases, the importin β1/target protein interaction is mediated through the binding of importin β1 HEAT repeats with the target protein sequences (either the cargo protein itself or importin α) (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vacuolar protein sorting-associated protein 26A (VPS26A), together with VPS29 and VPS35, is part of a trimeric protein complex known as the cargo-selective complex (CSC) (1). The CSC is regarded as the core functional component of the retromer, a multimeric protein complex involved in selective transport of cargo proteins from endosomes to the trans-Golgi network or plasma membrane (2). As part of the CSC, VPS26A does not have intrinsic membrane-binding activity but relies on association with RAB7A for recruitment to the cytosolic face of the endosomal membrane (3,4). Retromer defects are associated with neurological disease, and VPS26A mutations have been linked to perturbed endosomal cargo sorting in atypical parkinsonism (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Import and export through the nuclear envelope (NE) via facilitated translocation is important for many cellular processes including protein synthesis and miRNA biogenesis (1). Exportin 5 (XPO5) is a member of the importin β family of proteins (2) and functions in tRNA export in a sequence dependent fashion. More recently, it has been shown to export pre-miRNA by a RanGTPase-driven process from the nucleus to the cytoplasm, where pre-miRNA processing occurs to produce mature miRNAs (1,3). Study of the miRNA biosynthesis pathway is essential toward understanding the process of oncogenesis as global downregulation of miRNAs and the resulting alterations in expression of tumor suppressor and oncogenic proteins is a common phenotype of cancers cells (3,4). Research studies have shown that disruption of exportin 5 functions in many types of cancers including breast and lung, where pre-miRNA accumulates in the nucleus and miRNA maturation is impaired (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins (1) and are divided into two subgroups: importin α and importin β. Importins mainly function in nuclear protein import and export (2,3). Importin β1 (also known as karyopherin β1, Kpnβ1, Kpnb1, or p97) plays a key role in the nuclear import process (1-3). Nuclear import via importin β1 association with adaptor importin α (also known as karyopherin α, or Kpnα) is an essential component of the classical nuclear localization signal (NLS) pathway (4). Importin α directly recognizes the NLS present in the cargo target, prompting complex formation with importin β1. The cargo:importin α:importin β1 complex is transported across the nuclear pore complex (NPC) into the nucleus, where it is dissociated by the binding of RanGTP (1-4). Nuclear import directly via importin β1 can also occur by importin β1 recognition of the cargo protein, bypassing importin α involvement. In both cases, the importin β1/target protein interaction is mediated through the binding of importin β1 HEAT repeats with the target protein sequences (either the cargo protein itself or importin α) (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Retromer is a heteropentameric protein complex that consists of two protein compounds, a sortin-nexin dimer and a trimeric VPS26-VPS29-VPS35 protein subcomplex. The retromer complex associates with endosomes at their cytosolic side to mediate retrograde transport of transmembrane proteins from endosomes to the trans-Golgi network (1-3). Vacuolar protein sorting-associated protein 29 (VPS29) is considered a cryptic metallophosphoesterase, as it contains a conserved metallophosphoesterase-fold that includes a phenylalanine in place of an essential histidine residue within the active site (4). While VPS29 is capable of binding metal ions, it does so with low affinity and exhibits no enzymatic activity. Instead, VPS29 serves as a scaffold protein that interacts with the carboxy-terminal region of VPS35 and is essential for association of the retromer with other endosomal transport proteins (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins and are divided into two subgroups: importin alpha and importin beta. Importins function mainly in the import and export of nuclear proteins (1,2). KPNA2 (karyopherin alpha 2), a member of the importin alpha family, contains an N-terminal importin beta binding (IBB) motif followed by a hydrophobic region consisting of 10 armadillo repeats that function in binding to the nuclear localization signal (NLS) sites of cargo proteins (3-5). A trimeric complex (importin beta/KPNA2/cargo protein) forms, translocates into the nucleus, and then dissociates upon binding of RanGTP to importin beta. The dissociated importin alpha is recycled back to the cytoplasm with the help of export factor CAS (6,7). KPNA2 can differentially regulate target localization by binding to different cargo proteins, either actively transporting them to the nucleus (such as oct3/4) or retaining them in the cytoplasm by formation of incompetent complexes (such as oct6/brn2) (8). Research studies indicate that KPNA2 promotes cell proliferation and tumorigenesis. Research studies have also shown that up-regulation of KPNA2 is associated with cancer progression. Therefore, it has become a focus of biomarker research (9-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Exportins are a family of seven proteins that are responsible for intracellular transport. Exportin-1, also known as chromosome region maintenance 1 (CRM1), is a protein essential for nuclear export of hundreds of proteins, mRNAs, and rRNAs (1-3). Exportin-1 binds to substrates with nuclear export signals (NESs) rich in leucine and other hydrophobic amino acids (4). These hydrophobic sequences form an alpha-helix-loop that can bind to the exportin-1 hydrophobic groove (5). Studies have shown that these NESs can be modified either by protein modifications or by mutation to regulate exportin-1 binding (6-7). Targets of exportin-1 include many tumor suppressors, such as Rb, p53, FoxO1, BAF47, as well as oncoproteins, such as p21 and p27 (1). In addition, Myc can upregulate exportin-1 during biogenesis, where it can export newly formed 40S and 60S subunits from the nucleoli (8-9).Inhibition of nuclear export has been pursued for therapeutic application since the finding that leptomycin B could suppress HIV replication by suppressing the ability of exportin-1 to export the HIV-1 protein Rev (2, 10). Overexpression of exportin-1 has been associated with poor prognosis in various cancer types (11-13). Genomic approaches and development of inhibitors have identified exportin-1 as a druggable target (14-16). The use of various inhibitors of exportin-1 is also being explored in various antiviral therapies (17-18).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab4 is a member of the Ras superfamily of small Rab GTPases implicated in endocytosis. Rab4 is localized at early endosomes/recycling endosomes and functions as a key regulator for sorting/recycling of membrane and proteins (1,2). Rab4 has two isoforms, Rab4A and Rab4B, both of which are localized in similar cellular compartments and are believed to have similar functions (4). Rab4 interacts with several Rab4 effectors in a complex on a special endosome site that promotes membrane/protein recycling (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rap1 and Rap2 belong to the Ras subfamily of small GTPases and are activated by a wide variety of stimuli through integrins, receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCR), death domain associated receptors (DD-R) and ion channels (1,2). Like other small GTPases, Rap activity is stimulated by guanine nucleotide exchange factors (GEF) and inactivated by GTPase activating proteins (GAP). A wide variety of Rap GEFs have been identified: C3G connects Rap1 with RTKs through adaptor proteins such as Crk, Epacs (or cAMP-GEFs) transmit signals from cAMP, and CD-GEFs (or CalDAG-GEFs) convey signals from either or both Ca2+ and DAG (1). Rap1 primarily regulates multiple integrin-dependent processes such as morphogenesis, cell-cell adhesion, hematopoiesis, leukocyte migration and tumor invasion (1,2). Rap1 may also regulate proliferation, differentiation and survival through downstream effectors including B-Raf, PI3K, RalGEF and phospholipases (PLCs) (1-4). Rap1 and Rap2 are not fuctionally redundant as they perform overlapping but distinct functions (5). Recent research indicates that Rap2 regulates Dsh subcellular localization and is required for Wnt signaling in early development (6).

$759
30 reactions
1 Kit
The Active Rap1 Detection Kit provides all reagents necessary for measuring activation of Rap1 GTPase in the cell. GST-RalGDS-RBD fusion protein is used to bind the activated form of GTP-bound Rap1, which can then be immunoprecipitated with glutathione resin. Rap1 activation levels are then determined by western blot using a Rap1 Rabbit Antibody.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ras superfamily of small GTP-binding proteins (G proteins) comprise a large class of proteins (over 150 members) that can be classified into at least five families based on their sequence and functional similarities: Ras, Rho, Rab, Arf, and Ran (1-3). These small G proteins have both GDP/GTP-binding and GTPase activities and function as binary switches in diverse cellular and developmental events that include cell cycle progression, cell survival, actin cytoskeletal organization, cell polarity and movement, and vesicular and nuclear transport (1). An upstream signal stimulates the dissociation of GDP from the GDP-bound form (inactive), which leads to the binding of GTP and formation of the GTP-bound form (active). The activated G protein then goes through a conformational change in its downstream effector-binding region, leading to the binding and regulation of downstream effectors. This activation can be switched off by the intrinsic GTPase activity, which hydrolyzes GTP to GDP and releases the downstream effectors. These intrinsic guanine nucleotide exchange and GTP hydrolysis activities of Ras superfamily proteins are also regulated by guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound form and GTPase activating proteins (GAPs) that return the GTPase to its GDP-bound inactive form (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rap1 and Rap2 belong to the Ras subfamily of small GTPases and are activated by a wide variety of stimuli through integrins, receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCR), death domain associated receptors (DD-R) and ion channels (1,2). Like other small GTPases, Rap activity is stimulated by guanine nucleotide exchange factors (GEF) and inactivated by GTPase activating proteins (GAP). A wide variety of Rap GEFs have been identified: C3G connects Rap1 with RTKs through adaptor proteins such as Crk, Epacs (or cAMP-GEFs) transmit signals from cAMP, and CD-GEFs (or CalDAG-GEFs) convey signals from either or both Ca2+ and DAG (1). Rap1 primarily regulates multiple integrin-dependent processes such as morphogenesis, cell-cell adhesion, hematopoiesis, leukocyte migration and tumor invasion (1,2). Rap1 may also regulate proliferation, differentiation and survival through downstream effectors including B-Raf, PI3K, RalGEF and phospholipases (PLCs) (1-4). Rap1 and Rap2 are not fuctionally redundant as they perform overlapping but distinct functions (5). Recent research indicates that Rap2 regulates Dsh subcellular localization and is required for Wnt signaling in early development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cells contain ATP-driven proton pumps known as vacuolar H+-ATPases (V-ATPases) that acidify intracellular compartments and translocate protons across the plasma membrane (1,2). Intracellular v-ATPases play an important role in endocytosis and intracellular membrane trafficking, while plasma membrane v-ATPases are important in processes such as urinary acidification and bone resorption (1,2). Vacuolar ATPase enzymes are large, heteromultimeric protein complexes with component proteins found in either the V1 peripheral domain or the V0 integral domain (2). The cytoplasmic V1 domain contains a hexamer of A and B catalytic subunits, as well as a number of other protein subunits required for ATPase assembly and ATP hydrolysis. The integral V0 v-ATPase domain exhibits protein translocase activity and is responsible for transport of protons across the membrane (2). Research studies show that the v-ATPases ATP6V0c, ATP6V0d1, ATP6V1A, ATP6V1B2, and ATP6V1D interact with the Ragulator protein complex and are essential for amino acid induced activation of mTORC1 on the surface of lysosomes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Eukaryotic cells contain ATP-driven proton pumps known as vacuolar H+-ATPases (V-ATPases) that acidify intracellular compartments and translocate protons across the plasma membrane (1,2). Intracellular v-ATPases play an important role in endocytosis and intracellular membrane trafficking, while plasma membrane v-ATPases are important in processes such as urinary acidification and bone resorption (1,2). Vacuolar ATPase enzymes are large, heteromultimeric protein complexes with component proteins found in either the V1 peripheral domain or the V0 integral domain (2). The cytoplasmic V1 domain contains a hexamer of A and B catalytic subunits, as well as a number of other protein subunits required for ATPase assembly and ATP hydrolysis. The integral V0 v-ATPase domain exhibits protein translocase activity and is responsible for transport of protons across the membrane (2). Research studies show that the v-ATPases ATP6V0c, ATP6V0d1, ATP6V1A, ATP6V1B2, and ATP6V1D interact with the Ragulator protein complex and are essential for amino acid induced activation of mTORC1 on the surface of lysosomes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SNAT1/SLC38A1 belongs to the system A transporters that mediate Na+-dependent transport of short-chain neutral amino acids such as alanine, serine, and glutamine. SNAT1/SLC38A1 mediates the uptake of glutamine in neurons and plays a crucial role in glutamate-glutamine cycle. Steep concentration gradients across the plasma membrane are achieved by coupling of the electrochemical sodium gradient to amino acid transport. This allows a unidirectional mode of transport for SNAT1/SLC38A1. Upregulation of SNAT1/SLC38A1 by neurotrophic factors is key to dendritic growth and branching of cortical neurons. High expression of SNAT1/SLC38A1 is found in cerebral cortex primarily in neurons and to a lesser extent in astrocytes (1-4). Elevated SNAT1/SLC38A1 expression is prominent in human solid tumors including gliomas, hepatocellular carcinomas and human breast cancer (5-8). Research studies show that an aberrant SNAT1/SLC38A1 expression profile correlates with solid tumor recurrence and poor prognosis in patients with cholangiocarcinoma (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The solute carrier family 39 (zinc transporter) member 7 (SLC39A7, ZIP7) is an ER and Golgi membrane protein that regulates cellular zinc homeostasis by controlling release of zinc from these organelles to the cytoplasm (1,2). Zinc release mediated by ZIP7 results in activation of protein kinases that are involved in cell proliferation and migration (3,4). The protein kinase CK2 phosphorylates and activates ZIP7 in response to extracellular signals, such as growth factor stimulation (4,5). Increased expression of ZIP7 is observed in breast cancer tissues (6). Research studies indicate that ZIP7 is responsible for activation of multiple tyrosine kinases in aggressive, tamoxifen-resistant breast cancer (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. During neurotransmission, glutamate is released from vesicles of the pre-synaptic cell, and glutamate receptors (e.g. NMDA Receptor, AMPA Receptor) bind glutamate for activation at the opposing post-synaptic cell. Excitatory amino acid transporters (EAATs) regulate and maintain extracellular glutamate concentrations below excitotoxic levels. In addition, glutamate transporters may limit the duration of synaptic excitation by an electrogenic process in which the transmitter is cotransported with three sodium ions and one proton, followed by countertransport of a potassium ion. Five EAATs (EAAT1-5) are characterized: EAAT2 (GLT-1) is primarily expressed in astrocytes but is also expressed in neurons of the retina and during fetal development (1). Homozygous EAAT2 knockout mice have spontaneous, lethal seizures and an increased predisposition to acute cortical injury (2). PKC phosphorylates Ser113 of EAAT2 and coincides with glutamate transport (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Inositol 1,4,5-triphosphate receptor, also known as IP3R or InsP3R, is a member of the intracellular calcium release channel family and is located in the endoplasmic reticulum. IP3R functions as a Ca2+ release channel for intracellular stores of calcium ions. There are three types of IP3 receptors (IP3R1, 2, and 3) that require the second messenger inositol 1,4,5-triphosphate (IP3) for activation (1). Four individual subunits homo- or hetero-oligomerize to form the receptor's functional channel (2). Phosphorylation of IP3R1 at Ser1756 by cyclic AMP-dependent protein kinase A (PKA) regulates the sensitivity of IP3R1 to IP3 and may be a mode of regulation for Ca2+ release (3,4). IP3R1-mediated Ca2+ release appears to have an effect on the induction of long term depression (LTD) in Purkinje cells (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Inositol 1,4,5-triphosphate receptor, also known as IP3R or InsP3R, is a member of the intracellular calcium release channel family and is located in the endoplasmic reticulum. IP3R functions as a Ca2+ release channel for intracellular stores of calcium ions. There are three types of IP3 receptors (IP3R1, 2, and 3) that require the second messenger inositol 1,4,5-triphosphate (IP3) for activation (1). Four individual subunits homo- or hetero-oligomerize to form the receptor's functional channel (2). Phosphorylation of IP3R1 at Ser1756 by cyclic AMP-dependent protein kinase A (PKA) regulates the sensitivity of IP3R1 to IP3 and may be a mode of regulation for Ca2+ release (3,4). IP3R1-mediated Ca2+ release appears to have an effect on the induction of long term depression (LTD) in Purkinje cells (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The electroneutral cation-chloride-coupled co-transporter (SLC12) gene family comprises bumetanide-sensitive Na+/K+/Cl- (NKCC), thiazide-sensitive Na+/Cl-, and K+/Cl- (KCC) co-transporters. SLC12A1/NKCC2 and SLC12A2/NKCC1 regulate cell volume and maintain cellular homeostasis in response to osmotic and oxidative stress (1). The broadly expressed NKCC1 is thought to play roles in fluid secretion (i.e. salivary gland function), salt balance (i.e. maintenance of renin and aldosterone levels), and neuronal development and signaling (2-7). During neuronal development, NKCC1 and KCC2 maintain a fine balance between chloride influx (NKCC1) and efflux (KCC2), which regulates γ-aminobutyric acid (GABA)-mediated neurotransmission (3). Increased NKCC1 expression in immature neurons maintains high intracellular chloride levels that result in inhibitory GABAergic signaling; KCC2 maintains low intracellular chloride levels and excitatory GABAergic responses in mature neurons (4,5,8). Deletion of NKCC1 impairs NGF-mediated neurite outgrowth in PC-12D cells while inhibition of NKCC1 with bumetanide inhibits re-growth of axotomized dorsal root ganglion cells (6,7). Defective chloride homeostasis in neurons is linked to seizure disorders that are ameliorated by butemanide treatment, indicating that abnormal NKCC1 and NKCC2 expression or signaling may play a role in neonatal and adult seizures (9-12). NKCC1 is found as a homodimer or within heterooligomers with other SLC12 family members. This transport protein associates with a number of oxidative- and osmotic-responsive kinases that bind, phosphorylate, and activate NKCC1 co-transporter activity (13-16). In response to decreased intracellular chloride concentrations, Ste20-related proline-alanine-rich kinase (SPAK) phosphorylates NKCC1 to increase co-transporter activity and promote chloride influx (16-19). Oxidative stress response kinase 1 (OSR1) also phosphorylates and activates NKCC1 in response to oxidative stress (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Adenine nucleotide translocase 2 (ANT2/SLC25A5) is a member of the adenine nucleotide translocase family of mitochondrial inner membrane proteins that function differently in metabolic and apoptotic pathways (1). Research studies indicate that ANT2 expression in undifferentiated, proliferating cells correlates with the rate of glycolytic metabolism and may be an indicator of carcinogenesis (2). Suppression of ANT2/SLC25A5 expression by specific RNA interference in human breast cancer cells promotes apoptosis and inhibits tumor cell growth (2), which suggests a cytoprotective role of ANT2/SLC25A5 (1,3).