Microsize antibodies for $99 | Learn More >>

Pig Protein Heterotetramerization

Also showing Bovine Protein Heterotetramerization

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Annexin A2 (ANXA2), also known as lipocortin II or calpactin-1 heavy chain, is a 36 kDa member of the annexin superfamily that binds phospholipids and other proteins in a calcium-dependent manner via annexin repeats (1). Annexin A2 contains four such repeats through which it mediates protein-protein and protein-lipid interactions (1-4). It forms a constitutive heterotetramer with S100A10, acting as a bridge between the actin cytoskeleton, plasma membrane, and endocytotic vesicle machinery (5-7). Originally identified as a protein inhibitor of phospholipase A2, annexin A2 has subsequently been shown to interact with an array of protein and non-protein partners, including F-actin, spectrin, SNARE complexes, RNA, and virus particles (4,6,8,9). Annexin A2 has also been shown to have receptor-like activity and is detected on the surface of macrophages and vascular endothelial cells where it mediates macrophage activation and Factor Xa signaling, respectively (10-13). Upregulation of annexin A2 at the cell surface is thought to be modulated by phosphorylation at Tyr23 by Src (14-18). Interestingly, phosphorylation at Tyr23 has recently been shown to be required for cell surface expression of annexin A2 where it mediates motility, invasiveness, and overall metastatic potential of certain pancreatic cancer cells (19,20). Annexin A2 has also been shown to be heavily phosphorylated on serine residues in response to PKC activation via a pleiotropic mechanism (21-23). For a complete list of curated phosphorylation sites on annexin A2, please see PhosphoSitePlus® at www.phosphosite.org.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Annexin A2 (D11G2) Rabbit mAb #8235.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry

Background: Annexin A2 (ANXA2), also known as lipocortin II or calpactin-1 heavy chain, is a 36 kDa member of the annexin superfamily that binds phospholipids and other proteins in a calcium-dependent manner via annexin repeats (1). Annexin A2 contains four such repeats through which it mediates protein-protein and protein-lipid interactions (1-4). It forms a constitutive heterotetramer with S100A10, acting as a bridge between the actin cytoskeleton, plasma membrane, and endocytotic vesicle machinery (5-7). Originally identified as a protein inhibitor of phospholipase A2, annexin A2 has subsequently been shown to interact with an array of protein and non-protein partners, including F-actin, spectrin, SNARE complexes, RNA, and virus particles (4,6,8,9). Annexin A2 has also been shown to have receptor-like activity and is detected on the surface of macrophages and vascular endothelial cells where it mediates macrophage activation and Factor Xa signaling, respectively (10-13). Upregulation of annexin A2 at the cell surface is thought to be modulated by phosphorylation at Tyr23 by Src (14-18). Interestingly, phosphorylation at Tyr23 has recently been shown to be required for cell surface expression of annexin A2 where it mediates motility, invasiveness, and overall metastatic potential of certain pancreatic cancer cells (19,20). Annexin A2 has also been shown to be heavily phosphorylated on serine residues in response to PKC activation via a pleiotropic mechanism (21-23). For a complete list of curated phosphorylation sites on annexin A2, please see PhosphoSitePlus® at www.phosphosite.org.

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated antibody (Histone H3 (3H1) Rabbit mAb #9717).
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Dog, Hamster, Human, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Dog, Hamster, Human, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).