20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Detection of Bacterium

Also showing Polyclonal Antibody Western Blotting Detection of Bacterium

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nod1/CARD4 is a cytosolic protein structually related to Apaf-1 and plant drug-resistance proteins that has been implicated in apoptosis and inflammatory responses to certain pathogenic bacteria (1-3). It contains an amino-terminal caspase recruitment domain (CARD) that is linked to a central nucleotide-binding domain (NBD; also known as a NOD domain) and is followed by carboxy-terminal leucine-rich repeats (LRR) (1). Like Apaf-1, Nod1 induces apoptosis by a CARD/NBD-dependent activation of caspase-9 (1). The primary function of Nod1 is thought to be as a sensor for certain pathogenic microbes and triggering inflammatory responses including the activation of NF-κB and JNK pathways (4-6). The LRR of Nod1 appears to be involved in recognition of microbial components and the CARD domain induces NF-κB activation in cooperation with the CARD containing kinase, RICK/RIP2/CARDIAK (1,5,6). Mutations in Nod1 have been linked increased susceptibility to asthma (7) and inflammatory bowel disease (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.