Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Heterotypic Cell-Cell Adhesion

Also showing Polyclonal Antibody Western Blotting Heterotypic Cell-Cell Adhesion, Polyclonal Antibody Regulation of Heterotypic Cell-Cell Adhesion

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).The β1 subfamily includes 12 distinct integrin proteins that bind to different extracellular matrix molecules (4). Control of extracellular integrin binding influences cell adhesion and migration, while intracellular signaling messages relayed by the β1 cytoplasmic tail help to regulate cell proliferation, cytoskeletal reorganization, and gene expression (4). Research studies have implicated β1 integrin in various activities including embryonic development, blood vessel, skin, bone, and muscle formation, as well as tumor metastasis and angiogenesis (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Integrins are heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2). αIIβ3 and αVβ3 are the two β3 containing integrins which are prominently expressed in hematopoietic cells and angiogenic endothelic cells and perform adhesive functions in hemostasis, wound healing and angiogenesis (1,4). Tyr773 and Tyr785 (usually referred to as Tyr747 and Tyr759 based on the chicken sequence) are phosphorylated upon ligand binding (5). Phosphorylation of these tyrosine residues is required for certain ligand-induced signaling (6). Thr779 (corresponding to Thr753 of the chicken sequence) of integrin β3 in the platelet specific αIIβ3 is phosphorylated by PKD and/or Akt, which may modulate integrin association with other signaling molecules (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).Integrin α5/β1 is involved in multiple biological processes including embryonic development, angiogenesis and tumor metastasis (4,5). By interaction with its fibronectin ligand, α5/β1 transduces signals that regulate cell adhesion, migration, matrix assembly and cytoskeletal organization (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: KLF4 is a member of the erythroid Kruppel-like factor (EKLF) multigene family that is highly expressed in the differentiating layers of the epidermis (1, 2). KLF4 plays a critical role in the differentiation of epithelial cells and is essential for normal gastric homeostasis (2,3). Depending on the target gene, KLF4 can function as both a repressor and activator of transcription (4). Research studies suggest this protein may function as either a tumor suppressor or an oncogene depending on tumor type, with up-regulation in human squamous cell carcinoma of the head and neck and down-regulation in colorectal carcinoma (5,6). The in vitro reprogramming of somatic cells to an embryonic-like state has been achieved by retroviral transduction of four factors: Oct-3/4, Sox2, c-Myc, and KLF4 (7). These induced pluripotent stem cells (iPS) are of great therapeutic interest as they exhibit the key characteristics and growth properties of pluripotent stem cells (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Flotillins belong to a family of lipid raft-associated integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology domain (PHB) (1). Flotillin members are ubiquitously expressed and located in noncaveolar microdomains (lipid rafts) on the plasma membrane where they support signal transduction and regulate lipid raft motility and localization (2-5). Two flotillin members have been described, flotillin-1 and flotillin-2. In addition to its colocalization with lipid rafts on the plasma membrane, flotillin-1 also has been found in compartments of the endocytic and autophagosomal pathways, such as recycling/late endosomes, the Golgi complex, and the nucleus (6,7). Flotillin-2 is mainly localized to the plasma membrane and is prevalent in cell-cell contact sites. However, overexpressed flotillin-2 has also been found in the late endosome (4,8,9). Both flotillin-1 and flotillin-2 are commonly used as lipid raft-associated markers.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The extracellular matrix (ECM) is a complex structure of secreted macromolecules surrounding mammalian organs and tissues. Controlled interactions between cells and the ECM are important in proliferation, migration, survival, polarity, and differentiation. Cells contact the ECM primarily through heterodimeric integral membrane proteins called integrins. Integrins connect the ECM to the cytoskeleton, and therefore the cell signaling machinery, through protein complexes called focal adhesions (1).The ILK/PINCH/Parvin (IPP) complex is composed of three highly conserved proteins recruited to sites of ECM contact as pre-assembled structures. The IPP acts at the interface of the integrin/actin connection to regulate formation of focal adhesions and integrin signaling. All three proteins contain multiple protein binding domains allowing them to function as adaptor proteins in the formation of focal adhesions. ILK (integrin-linked kinase) also has a catalytic (protein Ser/Thr kinase) domain, and may or may not function as a kinase in vivo. Roles for IPP proteins outside of the IPP complex have been proposed, including regulation of gene expression (2,3).The parvin family consists of 3 members, α-parvin/actopaxin, β-parvin/affixin, and γ-parvin. α-parvin and β-parvin are expressed ubiquitously, while expression of γ-parvin is restricted to hematopoietic cells (4). α-parvin binds to f-actin both directly and via interaction with the focal adhesion protein paxillin (5). α-parvin regulates cell spreading and motility through interactions with the cofilin kinase TESK1 (6), and with the GTPase activating protein CdGAP (7). Phosphorylation of α-parvin during mitosis may have a role in the regulation of actin dynamics during the cell cycle (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).A pair of important α4 integrins, α4β1 and α4β7, interact with VCAM-1, fibronectin, and MAdCAM-1 at cell adhesions (3). Gene knockout and antibody blocking research reveal that α4 integrins play important roles in embryonic liver and heart development and in fetal lymphocyte homing (4-6). Phosphorylation at Ser988 within the cytoplasmic tail of integrin α4 blocks binding to paxillin and promotes leading edge migration (7,8).On SDS-PAGE, integrin α4 can migrate at several different apparent molecular sizes, a 150 kDa mature protein and a 140 kDa precursor protein (a 180 kDa protein also exists under mild non-reducing conditions) (9). Integrin α4 has a cleavage site at Arg558, which results in a small portion of the protein as either an 80 kDa N-terminal or 70 kDa C-terminal fragment (10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlaping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with the extracellular environment (inside-out signaling) (1,2).Several αV subfamily members, including αVβ3, αVβ5, αVβ1, are highly expressed in active endothelial cells and cancer cells (3-6) where they play a critical role in angiogenesis and tumor metastasis (7-9). Therefore, interest has focused on αV integrin as a key therapeutic target in the treatment of cancer (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Neuronal Cell Adhesion Molecule, or NRCAM, belongs to the immunoglobulins Cell Adhesion Molecules (CAM's) superfamily (1). NRCAM, an ankyrin-binding protein, contributes to the neurite outgrowth by providing directional signaling during axonal cone growth (2, 3, 4). Additionally, it plays a role in mediating the interaction between axons and Schwann cells and contributes to the formation and maintenance of Nodes of Ranvier (5, 6, 7, 8). NRCAM also plays an important role in the establishment of dendritic spines in developing cortical neurons (9). NRCAM is expressed in non-neuronal cells, mostly in endothelial cells (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Flotillins belong to a family of lipid raft-associated integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology domain (PHB) (1). Flotillin members are ubiquitously expressed and located in noncaveolar microdomains (lipid rafts) on the plasma membrane where they support signal transduction and regulate lipid raft motility and localization (2-5). Two flotillin members have been described, flotillin-1 and flotillin-2. In addition to its colocalization with lipid rafts on the plasma membrane, flotillin-1 also has been found in compartments of the endocytic and autophagosomal pathways, such as recycling/late endosomes, the Golgi complex, and the nucleus (6,7). Flotillin-2 is mainly localized to the plasma membrane and is prevalent in cell-cell contact sites. However, overexpressed flotillin-2 has also been found in the late endosome (4,8,9). Both flotillin-1 and flotillin-2 are commonly used as lipid raft-associated markers.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Erk5 (Mitogen-activated protein kinase 7, Big mitogen-activated protein kinase 1) is a member of the MAPK superfamily implicated in the regulation numerous cellular processes including proliferation, differentiation, and survival (1-4). Like other MAPK family members, Erk5 contains a canonical activation loop TEY motif (Thr218/Tyr220) that is specifically phosphorylated by MAP2K5 (MEK5) in a growth-factor-dependent, Ras-independent mechanism (5-7). For example, EGF stimulation promotes Erk5 phosphorylation that induces its translocation to the nucleus where it phosphorylates MEF2C and other transcriptional targets (5,6). Erk5 is also activated in response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic progenitor cells where it promotes survival and proliferation (7). In neuronal cells, Erk5 is required for NGF-induced neurite outgrowth, neuronal homeostasis, and survival (8,9). Erk5 is thought to play a role in blood vessel integrity via maintenance of endothelial cell migration and barrier function (10-12). Although broadly expressed, research studies have shown that mice lacking erk5 display numerous cardiac defects, suggesting Erk5 plays a critical role in vascular development and homeostasis (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: TNF-α, the prototypical member of the TNF protein superfamily, is a homotrimeric type-II membrane protein (1,2). Membrane-bound TNF-α is cleaved by the metalloprotease TACE/ADAM17 to generate a soluble homotrimer (2). Both membrane and soluble forms of TNF-α are biologically active. TNF-α is produced by a variety of immune cells including T cells, B cells, NK cells, and macrophages (1). Cellular response to TNF-α is mediated through interaction with receptors TNF-R1 and TNF-R2 and results in activation of pathways that favor both cell survival and apoptosis depending on the cell type and biological context. Activation of kinase pathways (including JNK, Erk1/2, p38 MAPK, and NF-κB) promotes the survival of cells, while TNF-α-mediated activation of caspase-8 leads to programmed cell death (1,2). TNF-α plays a key regulatory role in inflammation and host defense against bacterial infection, notably Mycobacterium tuberculosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) were first identified as molecules that can induce ectopic bone and cartilage formation (1,2). BMPs belong to the TGF-β superfamily, playing many diverse functions during development (3). BMPs are synthesized as precursor proteins and then processed by cleavage to release the C-terminal mature BMP. BMPs initiate signaling by binding to a receptor complex containing type I and type II serine/threonine receptor kinases that then phosphorylate Smad (mainly Smad1, 5, and 8), resulting in the translocation of Smad into the nucleus. BMP was also reported to activate MAPK pathways in some systems (3,4).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Erk5 (Mitogen-activated protein kinase 7, Big mitogen-activated protein kinase 1) is a member of the MAPK superfamily implicated in the regulation numerous cellular processes including proliferation, differentiation, and survival (1-4). Like other MAPK family members, Erk5 contains a canonical activation loop TEY motif (Thr218/Tyr220) that is specifically phosphorylated by MAP2K5 (MEK5) in a growth-factor-dependent, Ras-independent mechanism (5-7). For example, EGF stimulation promotes Erk5 phosphorylation that induces its translocation to the nucleus where it phosphorylates MEF2C and other transcriptional targets (5,6). Erk5 is also activated in response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic progenitor cells where it promotes survival and proliferation (7). In neuronal cells, Erk5 is required for NGF-induced neurite outgrowth, neuronal homeostasis, and survival (8,9). Erk5 is thought to play a role in blood vessel integrity via maintenance of endothelial cell migration and barrier function (10-12). Although broadly expressed, research studies have shown that mice lacking erk5 display numerous cardiac defects, suggesting Erk5 plays a critical role in vascular development and homeostasis (1,2).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Interleukin-1β (IL-1β), one of the major caspase-1 targets, is a multifunctional cytokine that is involved in a host of immune and proinflammatory responses (1). It is produced primarily by activated monocytes and macrophages. It signals through various adaptor proteins and kinases that lead to activation of numerous downstream targets (2-6). Human IL-1β is synthesized as a 31 kDa precursor. To gain activity, the precursor must be cleaved by caspase-1 between Asp116 and Ala117 to yield a 17 kDa mature form (7,8). Detection of the 17 kDa mature form of IL-1β is a good indicator of caspase-1 activity.