20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Immunoprecipitation Atpase Activity

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s, is a progressive movement disorder characterized by rigidity, tremors and postural instability. The pathological hallmark of PD is progressive loss of dopaminergic neurons in the substantia nigra of the ventral midbrain and the presence of intracellular Lewy bodies (protein aggregates of α-synuclein, ubiquitin and other components) in surviving neurons of the brain stem (1). Various genes and loci (α-synuclein/PARK1 and 4, parkin/PARK2, UCH-L1/PARK5, PINK1/PARK6, DJ-1/PARK7, LRRK2/PARK8, ATP13A2/PARK9) are genetically linked to PD (2).PARK9, also known as ATP13A2, is a member of the P-type ATPase superfamily and is involved in the lysosomal degradation pathway, clearing α-synuclein aggregates (3,4). The protein has 10 transmembrane domains and wild-type PARK9 localizes to the lysosomal membrane. In contrast, all three known mutations, which have premature stop codons resulting in a truncated protein, are retained in the endoplasmic reticulum and degraded by the proteasome. PARK9 is predominantly expressed in the brain and has been linked to Kufor-Rakeb Syndrome, a monogenic form of recessively inherited, atypical parkinsonism that is characterized by juvenile-onset, with pyramidal degeneration and cognitive dysfunction (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Several protein-protein interactions are essential to membrane fusion during endocytosis. Membrane fusion requires interaction among SNARE1 proteins associated with both donor and acceptor membranes (1,2). Following membrane fusion, the α-SNAP cytoplasmic adapter protein binds to the SNARE complex. N-ethylmaleimide-sensitive factor (NSF), a hexameric ATPase, then associates with the α-SNAP/SNARE complex to mediate SNARE disassembly during membrane fusion (3,4). The ATPase activity of NSF induces a conformational change in the α-SNAP/SNARE complex that leads to its dissociation from the membrane, membrane fusion and eventual recycling of the SNARE complex for subsequent membrane fusion (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: ATP-binding cassette (ABC) proteins are membrane-residing transporters that transport substrates across the membrane in an ATP-dependent manner. ABC substrates subject to active transport across the membrane include ions, amino acids, lipids, and sterols (1). ATP-Binding cassette sub-family A member 7 (ABCA7) is a member of the ABC family and functions to regulate phospholipid and cholesterol homeostasis in central nervous system (CNS) as well as peripheral tissue. ABCA7, like most ABC transporters, contains two transmembrane domain bundles composed of six membrane-spanning helices and two nucleotide-binding domains. ABCA7 and its closest homolog, ABCA1, are 12A class members of ABCs and both proteins function to transport cholesterol and phospholipids in an apolipoprotein A (apoA) – dependent manner (2, 3). ABCA7 is expressed in a variety of tissue and exhibits neuronal and microglial enrichment in the CNS (4). Human genetic studies identified ABCA7 gene variants, including loss-of-function mutations, that associate with late-onset Alzheimer’s disease (AD) (5). ABCA7 dysfunction may contribute directly to AD pathogenesis by accelerating amyloid-β (Aβ) production and/or altering microglia-dependent phagocytosis of the Aβ (4, 6, 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: HSP40 and HSP40-like proteins represent a large family of chaperone proteins that are homologous to E. coli DnaJ protein (1). These proteins are classified into three subtypes based on their structures. The common feature of the family is a conserved J domain, which is usually located at the amino terminus of proteins and responsible for their association with HSP70 (1,2). Human HSP40, also known as Hdj1, belongs to subtype II that contain a unique Gly/Phe-rich region (2). HSP40 family proteins bind unfolded proteins, prevent their aggregation, and then deliver them to HSP70 (2,3). Another major function of HSP40 is to stimulate ATPase activity of HSP70, which causes conformational change of the unfolded proteins (4,5). The HSP40-HSP70-unfolded protein complex further binds to co-chaperones Hip, Hop and HSP90 or components of the protein degradation machinery such as CHIP and BAG-1, which either leads to protein folding or degradation, respectively (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Multi-drug resistance protein 2 (MRP2), also known as cMRP, cMOAT, and ABCC2, is an ATP binding cassette (ABC) transporter and part of the multi-drug resistance (MRP) family (1,2). The MRP proteins are membrane proteins that function as organic anion pumps involved in the cellular removal of cancer drugs (2). MRP2 is associated with resistance to a number of cancer drugs, such as cisplatin, etoposide, doxorubicin, and methotrexate (3-5). MRP2 is predominately expressed on the apical membranes in the liver (6-9) and kidney proximal tubules (10). It is responsible for the ATP-dependent secretion of bilirubin glucuronides and other organic anions from hepatocytes into the bile, a process important for the excretion of endogenous and xenobiotic substances. Loss of MRP2 activity is the cause of Dubin-Johnson syndrome, an autosomal recessive disorder characterized by defects in the secretion of anionic conjugates and the presence of melanin like pigments in hepatocytes (11-13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA damage, if not repaired, can lead to genome instability and tumorigenesis. Eukaryotic cells use multiple (sometimes overlapping) signaling pathways to respond to agents that cause various types of DNA lesions. Downstream molecules in DNA repair pathways converge on the sites of DNA damage, resulting in cell cycle arrest and repair or apoptosis (1). Rad18 is an E3 ubiquitin ligase recruited to sites of DNA damage. Along with the E2 ubiquitin ligase Rad6, Rad18 is responsible for monoubiquitination of DNA damage proteins including the replication clamp PCNA and the Fanconi anemia core protein FANCD2. Monoubiquitination of these proteins signals to downstream effector molecules and results in the repair of either post-replication repair lesions via the translesion synthesis (TLS) pathway or DNA double strand breaks via homologous recombination (2-4). Phospho-proteomic studies indicate that Ser403 of Rad18 may be phosphorylated by ATM/ATR in response to DNA damage-inducing agents (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: YTH domain-containing protein 1 (YTHDC1) and YTH domain-containing protein 2 (YTHDC2) both belong to a family of proteins that bind to RNA. YTHDC1 and YTHDC2 both recognize and bind to N6-methyladenosine(m6A)-containing RNAs; binding is mediated through the YTH domains (1-3). m6A is a modification that is present at internal sites of mRNAs and some non-coding RNAs and plays a role in regulating mRNA splicing, processing, and stability. YTHDC1, also known as splicing factor YT521, regulates alternative splicing by functioning as a key regulator of exon-inclusion or exon-skipping. YTHDC1 promotes exon-inclusion by recruiting pre-mRNA splicing factor SRSF3 to regions containing m6A, while repressing exon-skipping by blocking SRSF10 binding to these same regions (2). Increased expression of YTHDC1 promotes malignant endometrial carcinoma (EC) through alternative splicing of vascular endothelial growth factor A (VEGF-A), resulting in an increase in VEGF-165 isoform and increased EC cell invasion (4). YTHDC2 functions to enhance the translation efficiency of target mRNAs and may play a role in spermatogenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5). The NURF complex plays an important role in neuronal physiology by promoting neurite outgrowth and regulation of Engrailed homeotic genes that are involved in neuronal development in the mid-hindbrain (3). NURF is also thought to be involved in the maturation of T cells from thymocytes by regulating chromatin structure and expression of genes important for T cell development (6). The largest subunit of the NURF complex, BPTF, is required for proper development of mesoderm, endoderm, and ectoderm tissue lineages, suggesting a role for SMARCA1 in the development of the germ layers in mouse embryo (7). Disruption of the CERF complex by deletion of CECR2, an interacting partner of SMARCA1, is associated with the neural tube defect exencephaly, linking the CERF complex with regulation of neurulation (4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesin-like protein KIF1B is a member of the kinesin 3 family of C-kinesins that are characterized by a kinesin-motor domain in the carboxy-terminal region. As part of the general mechanism of kinesin-mediated cellular transport, C-kinesins are known to drive microtubule plus and minus end motilities (1-3). KIF1B is implicated in the transport of synaptic proteins to the cell periphery in neuronal cell axons by interaction with Rab3 guanine nucleotide exchange factor (3). Mitochondria are also often transported in axons by KIF1B (3-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD8+ cytotoxic T cells recognize peptides presented by MHC class I molecules on the surface of infected cells and tumor cells. The transporters associated with antigen processing 1 and 2 (TAP1 and TAP2) form the TAP complex which resides on the ER membrane and transports peptides from the cytoplasm into the ER for loading onto MHC class I molecules (1-8). In addition, TAP localized to endosomal membranes is important for cross-presentation by dendritic cells (9,10). IFN-γ produced by T cells and NK cells in response to infection causes upregulation of TAP1 and TAP2, resulting in increased antigen presentation to T cells (11). Some viral proteins inhibit TAP function or downregulate TAP expression resulting in viral immune evasion (12,13). In addition, investigators have observed reduced TAP expression in a variety of tumor types, and it is thought to be one mechanism for tumor immune evasion (14).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cyclin H belongs to a conserved cyclin family that plays a critical role in the regulation of cell cycle dependent kinases (CDKs) necessary for cell cycle progression (1,2). In general, the activity of CDKs requires the binding of appropriate cyclins as well as phosphorylation driven by Cdk-activating kinase (CAK). Cyclin H is part of the CAK complex that includes the kinase CDK7, and an assembly factor p36/Mat1, which enhances binding between cyclin H and CDK7 and increases activity (3,4). CAK regulates progression through the cell cycle by activating cdc2, CDK2, and CDK4 kinases through phosphorylation of a critical threonine residue in the T-loop of the CDK-cyclin complexes (5,6). The CAK complex can exist either in its free form or in association with transcription factor IIH (TFIIH) which can affect its substrate specificity (7,8,9). When bound to TFIIH, CAK preferentially phosphorylates the carboxy-terminal domain of RNA polymerase II (9), providing a link between cell cycle control, transcriptional regulation, and DNA repair.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The ATPase inhibitor factor 1 (ATPIF1) gene encodes a mitochondrial ATPase inhibitor that limits ATP depletion when mitochondrial respiration is impaired (1). ATPIF1 becomes activated following a drop in pH, binding to β-F1-ATPase, thereby inhibiting the hydrolase activity of the H+-ATP synthase (1,2). In addition to its role as an ATP hydrolase, ATPIF1 has also been shown to play a regulatory role in cellular energy metabolism by triggering the induction of aerobic glycolysis in cancer cells resulting in their Warburg phenotype (3,4). Research studies demonstrate that the overexpression of ATPIF1 in several human carcinomas further supports its participation in oncogenesis and provides insight into the altered metabolism of cancer cells, which includes the reprogramming of energetic metabolism toward glycolysis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Androgen receptor (AR), a zinc finger transcription factor belonging to the nuclear receptor superfamily, is activated by phosphorylation and dimerization upon ligand binding (1). This promotes nuclear localization and binding of AR to androgen response elements in androgen target genes. Research studies have shown that AR plays a crucial role in several stages of male development and the progression of prostate cancer (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Human progesterone receptor (PR) is expressed as two forms: the full length PR-B and the short form PR-A. PR-A lacks the first 164 amino acid residues of PR-B (1,2). Both PR-A and PR-B are ligand activated, but differ in their relative ability to activate target gene transcription (3,4). The activity of PR is regulated by phosphorylation; at least seven serine residues are phosphorylated in its amino-terminal domain. Three sites (Ser81, Ser102, and Ser162) are unique to full length PR-B, while other sites (Ser190, Ser294, Ser345, and Ser400) are shared by both isoforms (5). Phosphorylation of PR-B at Ser190 (equivalent to Ser26 of PR-A) is catalyzed by CDK2 (6). Mutation of Ser190 results in decreased activity of PR (7), suggesting that the phosphorylation at Ser190 may be critical to its biological function.

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Mouse, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The 21-24 kDa integral proteins, caveolins, are the principal structural components of the cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae. Three members of the caveolin family (caveolin-1, -2, and -3) have been identified with different tissue distributions. Caveolins form hetero- and homo-oligomers that interact with cholesterol and other lipids (1). Caveolins are involved in diverse biological functions, including vesicular trafficking, cholesterol homeostasis, cell adhesion, and apoptosis, and are also implicated in neurodegenerative disease (2). Caveolins interact with multiple signaling molecules such as Gα subunit, tyrosine kinase receptors, PKCs, Src family tyrosine kinases, and eNOS (1,2). It is believed that caveolins serve as scaffolding proteins for the integration of signal transduction. Phosphorylation at Tyr14 is essential for caveolin association with SH2 or PTB domain-containing adaptor proteins such as GRB7 (3-5). Phosphorylation at Ser80 regulates caveolin binding to the ER membrane and entry into the secretory pathway (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).