Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Immunoprecipitation Regulation of Dendrite Morphogenesis

Also showing Polyclonal Antibody Immunoprecipitation Positive Regulation of Dendrite Morphogenesis

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TNIK (Traf2 and Nck-Interacting Kinase) is a member of the germinal center kinase (GCK) family (1). TNIK phosphorylates TCF4 and is an essential activator for Wnt signaling (2). Animal knockout model and kinase inhibition studies have reported that TNIK can stimulate both cancer cell growth and epithelial-mesenchymal transition (EMT) (3-5). TNIK has also been shown to promote F-actin disruption through its interactions with Rap2 (6). In neuronal cells, TNIK is enriched in the postsynaptic density (PSD), where it is reported to modulate neuronal receptor surface expression, dendrite complexity and signaling (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CUTL1 (Cut-like 1), also known as CUX1 (Cut homeobox 1) (CUX1), is a transcription factor that has been implicated in many cellular processes in different tissues, such as cell migration, neuronal differentiation, and DNA repair (1-5). CUTL1 expression and activities are altered in cancer. Research studies have shown the CUTL1 gene to be a frequent target of loss-of-heterozygocity in various cancers (6,7). On the other hand, CUTL1 expression is elevated in many cancers and is associated with shorter disease-free survival (8). These accumulating evidence suggest that decreased CUTL1 expression promote tumor initiation and increased CUTL1 expression facilitates tumor progression (9). While full-length CUTL1 is about 200 kDa (p200), short forms p110 and p75 can also be generated by proteolytic processing and alternative transcription initiation site, respectively (10, 11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β, γ, ε, σ, ζ, τ, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ, respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed (4). 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cell proliferation in all eukaryotic cells depends strictly upon the ubiquitin ligase (E3) activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. APC/C performs its various functions by promoting the assembly of polyubiquitin chains on substrate proteins, which targets these proteins for degradation by the 26S proteasome (1,2). In humans, twelve different APC/C subunits have been identified. Like all E3 enzymes, APC/C utilizes ubiquitin residues that have been activated by E1 enzymes and then transferred to E2 enzymes. Indeed, APC/C has been shown to interact with UBE2S and UBE2C E2 enzymes, in part, via the RING-finger domain-containing subunit, APC11 (3-5). APC/C activity is also strictly dependent upon its association with multiple cofactors. For example, the related proteins, Cdc20 and Cdh1/FZR1, participate in the recognition of APC/C substrates by interacting with specific recognition elements in these substrates (6), called D-boxes (7) and KEN-boxes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Calcineurin, also known as protein phosphatase 2B (PP2B), is a calmodulin-dependent, calcium-activated, serine/threonine protein phosphatase composed of a catalytic subunit (calcineurin A) and a tightly bound regulatory subunit (calcineurin B) (1). Calcineurin A is highly homologous to protein phosphatases 1 and 2A. Calcineurin B, like calmodulin, contains four EF-hand, calcium-binding motifs.Calcineurin signaling has been implicated in a broad spectrum of cellular processes including cell-cycle regulation, stress response and apoptosis and is required for proper cardiovascular and skeletal muscle development (2,3). Calcineurin-mediated dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is essential for NFAT activation and nuclear translocation and early gene expression in T lymphocytes (2,3). Calcineurin is the target of the immunosuppressive drugs Cyclosporin A and FK506, both of which block the activation of quiescent T cells after T cell receptor engagement (2,3). Cyclosporin A and FK506 bind to the immunophilins, cyclophilin and FKBP respectively and the immunophilin-drug complex binds to calcineurin and blocks substrate binding.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Adherens junctions are dynamic structures that form cell-cell contacts and are important in development, differentiation, tissue integrity, morphology and cell polarity. They are composed of the transmembrane proteins, cadherins, which bind cadherins on adjacent cells in a calcium-dependent manner. On the cytoplasmic side of adherens junctions, the classic model states that cadherins are linked to the cytoskeleton through β- and α-catenin. α-E-catenin is ubiquitously expressed, α-N-catenin is expressed in neuronal tissue, and α-T-catenin is primarily expressed in heart tissue. Research studies have demonstrated that loss of E-cadherin and α-E-catenin occurs during the progression of several human cancers, indicating that the breakdown of adherens junctions is important in cancer progression (reviewed in 1).Research studies also suggest that, rather than acting as a static link between cadherins and actin, α-catenin regulates actin dynamics directly, possibly by competing with the actin nucleating arp2/3 complex (2,3). α-catenin also plays a role in regulating β-catenin-dependent transcriptional activity, affecting differentiation and response to Wnt signaling. α-catenin binds to β-catenin in the nucleus, preventing it from regulating transcription, and levels of both proteins appear to be regulated via proteasome-dependent degradation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cyclin-dependent kinases (CDKs) are serine/threonine kinases that are activated by cyclins and govern eukaryotic cell cycle progression. While CDK5 shares high sequence homology with its family members, it is thought mainly to function in postmitotic neurons to regulate the cytoarchitecture of these cells. Analogous to cyclins, the regulatory subunits p35 and p39 associate with and activate CDK5 despite the lack of sequence homology. CDK5 is ubiquitously expressed, with high levels of kinase activity detected primarily in the nervous system due to the narrow expression pattern of p35 and p39 in post-mitotic neurons. A large number of CDK5 substrates have been identified although no substrates have been specifically attributed to p35 or p39. Substrates of CDK5 include p35, PAK1, Src, β-catenin, tau, neurofilament-H, neurofilament-M, synapsin-1, APP, DARPP32, PP1-inhibitor, and Rb. p35 is rapidly degraded (T1/2 <20 min) by the ubiquitin-proteasome pathway (1). However, p35 stability increases as CDK5 kinase activity decreases, likely as a result of decreased phosphorylation of p35 at Thr138 by CDK5 (2). Proteolytic cleavage of p35 by calpain produces p25 upon neurotoxic insult, resulting in prolonged activation of CDK5 by p25. Research studies have shown accumulation of p25 in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis (ALS) (3,4).

$303
200 µl
$717
600 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Monkey, Mouse, Rat, S. cerevisiae

Application Methods: Immunoprecipitation, Western Blotting

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin 1 and presenilin 2 are transmembrane proteins belonging to the presenilin family. Mutation of presenilin genes has been linked to early onset of Alzheimer disease, probably due to presenilin's associated γ-secretase activity for amyloid-β protein processing (1,2). Endogenous presenilin mainly exists in a heterodimeric complex formed from the endoproteolytically processed amino-terminal (34 kDa) and carboxy-terminal (~20, 22, 23 kDa) fragments (CTF) (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) were first identified as molecules that can induce ectopic bone and cartilage formation (1,2). BMPs belong to the TGF-β superfamily, playing many diverse functions during development (3). BMPs are synthesized as precursor proteins and then processed by cleavage to release the C-terminal mature BMP. BMPs initiate signaling by binding to a receptor complex containing type I and type II serine/threonine receptor kinases that then phosphorylate Smad (mainly Smad1, 5, and 8), resulting in the translocation of Smad into the nucleus. BMP was also reported to activate MAPK pathways in some systems (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).