20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Receptor Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Thymidine phosphorylase (TP) is a platelet-derived endothelial cell growth factor (PD-ECGF) that catalyzes the formation of thymine and 2-deoxy-D-ribose-1-phosphate from thymidine and orthophosphate (1). This intracellular enzyme is capable of both promoting angiogenesis and inhibiting apoptosis. Thymidine phosphorylase catalytic activity is required for its angiogenic function (2,3). Increased expression of TP/PD-ECGF is seen in a wide variety of different solid tumors and inflammatory diseases and is often associated with poor prognosis (4,5). Alternatively, TP can activate fluorouracil derivative (DFUR) prodrugs and increase the antitumor activity of the related treatment (1,5). The use of thymidine phosphorylase as a cancer therapeutic target has been studied extensively, with emphasis on either inhibiting TP enzymatic activity or increasing enzyme induction with concomitant DFUR treatment (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Macrophage inhibitory cytokine-1 (Mic-1), also termed GDF15 (1), PTGF-β (2), PLAB (3), PDF (4), and NAG-1 (5), is a divergent member of the transforming growth factor-β (TGF-β) superfamily (6). Like other family members, Mic-1 is synthesized as an inactive precursor that undergoes proteolytic processing involving removal of an N-terminal hydrophobic signal sequence followed by cleavage at a conserved RXXR site generating an active C-terminal domain that is secreted as a dimeric protein. Mic-1 is highly expressed in the placenta and is also dramatically increased by cellular stress, acute injury, inflammation, and cancer. In the brain, Mic-1 is found in the choroid plexus and is secreted into the cerebrospinal fluid (7). It is also a transcriptional target of the p53 tumor suppressor protein and may serve as a biomarker for p53 activity (8,9). During tumor progression, Mic-1 has various effects on apoptosis, differentiation, angiogenisis, and metastasis, and may also contribute to weight loss during cancer (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Macrophage inhibitory cytokine-1 (Mic-1), also termed GDF15 (1), PTGF-β (2), PLAB (3), PDF (4), and NAG-1 (5), is a divergent member of the transforming growth factor-β (TGF-β) superfamily (6). Like other family members, Mic-1 is synthesized as an inactive precursor that undergoes proteolytic processing involving removal of an N-terminal hydrophobic signal sequence followed by cleavage at a conserved RXXR site generating an active C-terminal domain that is secreted as a dimeric protein. Mic-1 is highly expressed in the placenta and is also dramatically increased by cellular stress, acute injury, inflammation, and cancer. In the brain, Mic-1 is found in the choroid plexus and is secreted into the cerebrospinal fluid (7). It is also a transcriptional target of the p53 tumor suppressor protein and may serve as a biomarker for p53 activity (8,9). During tumor progression, Mic-1 has various effects on apoptosis, differentiation, angiogenisis, and metastasis, and may also contribute to weight loss during cancer (10,11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Docking proteins are substrates of tyrosine kinases that function in the recruitment and assembly of specific signal transduction molecules. There are five members in the p62dok family, p62Dok (Dok-1), p56Dok-2 (Dok-2, or DoK-R), Dok-3, Dok-4 and Dok-5 (1-3), characterized by the presence of an amino-terminal PH domain, a central PTB domain and numerous potential sites of tyrosine phosphorylation. Tyrosine phosphorylation of p56Dok-2 occurs upon stimulation of cells with a variety of stimuli, or in cells transformed by oncogenic tyrosine kinases such as v-Src and Bcr-Abl (3-5). Based on the presence of several signaling domains (PH, PTB domain, tyrosine residue and proline-rich regions), it has been proposed that the p62dok family act as docking proteins that link RTKs to signal transduction pathways. p56Dok-2 has been proposed to be a negative regulator of cytokine-induced proliferation in T cells (5). Phosphorylated Tyr351 of p56Dok-2 mediates an association with the SH2 domain of Nck (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Docking proteins are substrates of tyrosine kinases that function in the recruitment and assembly of specific signal transduction molecules. There are five members in the p62dok family, p62Dok (Dok-1), p56Dok-2 (Dok-2, or DoK-R), Dok-3, Dok-4 and Dok-5 (1-3), characterized by the presence of an amino-terminal PH domain, a central PTB domain and numerous potential sites of tyrosine phosphorylation. Tyrosine phosphorylation of p56Dok-2 occurs upon stimulation of cells with a variety of stimuli, or in cells transformed by oncogenic tyrosine kinases such as v-Src and Bcr-Abl (3-5). Based on the presence of several signaling domains (PH, PTB domain, tyrosine residue and proline-rich regions), it has been proposed that the p62dok family act as docking proteins that link RTKs to signal transduction pathways. p56Dok-2 has been proposed to be a negative regulator of cytokine-induced proliferation in T cells (5). Phosphorylated Tyr351 of p56Dok-2 mediates an association with the SH2 domain of Nck (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Mitotic control is important for normal growth, development, and maintenance of all eukaryotic cells. Research studies have demonstrated that inappropriate control of mitosis can lead to genomic instability and cancer (reviewed in 1,2). A regulator of mitosis, Greatwall kinase (Gwl), was first identified in Drosophila melanogaster (3). Subsequent studies showed that, based on sequence homology and function, microtubule-associated serine/threonine kinase-like (MASTL) is the human ortholog of Gwl (4). Regulation of MASTL/Gwl activation has been shown to be critical for the correct timing of mitosis. Research studies have shown that Gwl is activated by hyperphosphorylation (5). The phosphorylation of human Gwl at Thr194 and Thr207 by active cyclin B1-cdc2 leads to possible autophosphorylation at Ser875 (Ser883 in Xenopus), which stabilizes the kinase. Activated Gwl phosphorylates α-Endosulfine (ENSA) and cAMP-regulated phosphoprotein 19 (ARPP19) at Ser67 and Ser62, respectively. Phosphorylated ENSA and ARPP19 inhibit the activity of the B55 subunit-associated form of protein phosphatase 2A (PP2A-B55), allowing for complete phosphorylation of mitotic substrates by cyclin B1-cdc2 and mitotic entry. When Gwl is inactivated, PP2A-B55 reactivates, which leads to dephosphorylation of cyclin B1-cdc2 and mitotic exit (5,6, reviewed in 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: B-lymphocyte antigen CD20 (also known as MS4A1; Membrane-spanning 4-domains subfamily A member 1) is a cell surface phosphoprotein involved in the regulation of B cell activation and proliferation (1,2). It is commonly used as a marker to identify B cells and is expressed throughout B cell development, up until their differentiation into plasma cells. CD20 has no known ligand, and its expression and function are largely conserved between human and mouse (1-3). Evidence suggests that CD20 is necessary for store operated calcium (SOC) entry, which leads to elevated cytoplasmic calcium levels required for B cell activation (4-5). Anti-CD20 antibody immunotherapy depletes B cells by activation of the innate monocytic network and is a common treatment for B cell lymphomas, leukemias, and autoimmune diseases (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Stargazin is a four-pass transmembrane protein related to VDCC (voltage dependent calcium channel) γ subunits and part of the TARP (transmembrane AMPA receptor regulatory protein) family of proteins. TARP proteins can form a complex with AMPA receptors (GluR1-4) and serve as integral auxiliary subunits (1-6).Interactions between stargazin and AMPA receptors are implicated in regulation of receptor surface expression, synaptic clustering and recycling, as well as increased receptor responsiveness to glutamate (1,2,5,6). Stargazin may play a role in the molecular mechanism of AMPAR-mediated inflammatory pain by taking part in signaling pathways that relay pain in the spinal cord (5). Because the protein also modulates the pharmacology of AMPA receptors, it enhances the effects of AMPAR potentiators that have therapeutic potential for a number of mental and neurodegenerative diseases (6).The carboxy terminus of the stargazin protein interacts with the PDZ domains of PSD95 and other membrane-associated guanylate kinase (MAGUK) family members, and together traffic AMPA receptors to the cell surface membrane, anchoring them to the postsynaptic site (1,7). Phosphorylation of stargazin by PKA on Thr321 inhibits this binding (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Transforming growth factor alpha (TGF-alpha) is a member of the epidermal growth factor (EGF) family, sharing the same receptor, EGFR, and regulating cell proliferation, survival, and differention (1). Members of the family share an EGF-like domain of 45-60 amino acids characterized by the conservation of six regularly spaced cysteins, forming three disulfide bonds that function as their receptor binding domain. TGF-alpha was initially discovered in the media of retrovirally transformed fibroblasts, and it name comes from its ability to induce transformation in cultured fibroblasts (2). This transforming activity was later shown to require TGF-beta, which potentiates the activity of TGF-alpha through a separate receptor (3). Soluble TGF-alpha is released from its membrane-bound precusor, pro-TGF-alpha, following protolytic cleavage, but the membrane bound precursor is still able to bind and activate EGFR (4). Binding of soluble or membrane bound TGF-alpha to EGFR leads to receptor dimerization, tyrosine autophosphorylation, and activation of downstream signaling components. TGF-alpha and related peptides play an important role in the progression of cancer as well as in neuropathological processes (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: RANK (receptor activator of NF-κB) is a member of the tumor necrosis factor (TNF) receptor subfamily that is activated by its ligand, RANKL (TRANCE/OPGL/ODF), to promote survival of dendritic cells and differentiation of osteoclasts (1-4). Although RANK is widely expressed, its cell surface expression may be more restricted to dendritic cells and foreskin fibroblasts (1). RANK contains a 383-amino acid intracellular domain that associates with specific members of the TRAF family to NF-κB and JNK activiation (1,5). RANKL/RANK signaling may also lead to survival signaling through activation of the Akt pathway and an upregulation of survival proteins, including Bcl-xL (2,6). RANK signaling has been implicated as a potential therapeutic to inhibit bone loss and arthritis (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dickkopf (DKK) family proteins consist of four members DKK1, DKK2, DKK3 and DKK4 that function as secreted Wnt antagonists by inhibiting Wnt coreceptors LRP5 and LRP6 (1,2). DKKs contain two cysteine-rich domains in which the positions of 10 cysteine residues are well conserved (3). Their expression is both temporally and spatially regulated during animal development (4). DKKs also bind with high affinity to transmembrane proteins Kremen1 and 2, which themselves also modulate Wnt signaling (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: RANK (receptor activator of NF-κB) is a member of the tumor necrosis factor (TNF) receptor subfamily that is activated by its ligand, RANKL (TRANCE/OPGL/ODF), to promote survival of dendritic cells and differentiation of osteoclasts (1-4). Although RANK is widely expressed, its cell surface expression may be more restricted to dendritic cells and foreskin fibroblasts (1). RANK contains a 383-amino acid intracellular domain that associates with specific members of the TRAF family to NF-κB and JNK activiation (1,5). RANKL/RANK signaling may also lead to survival signaling through activation of the Akt pathway and an upregulation of survival proteins, including Bcl-xL (2,6). RANK signaling has been implicated as a potential therapeutic to inhibit bone loss and arthritis (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Renin is a secreted proteinase whose enzymatic activity is to convert angiotensinogen into angiotensin I in the plasma, initiating a process that results in an elevation of blood pressure and increased sodium retention by the kidney (1). Renin is synthezed in kidney as a procursor, prorenin, which is released into circulation. Both renin and prorenin can bind to (pro)renin receptor and induce angiotensin-independent signaling events leading to activation of MAPKs and up-regulation of TGF-β1 and matrix proteins (2, 3). Defects in renin can cause renal tubular dysgenesis, a severe autosomal recessive disorder of renal tubular development (4, 5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cancer/testis antigens (CTAs) are a family of more than 100 proteins whose normal expression is largely restricted to immune privileged germ cells of the testis, ovary, and trophoblast cells of the placenta. Although most normal somatic tissues are void of CTA expression, due to epigenetic silencing of gene expression, their expression is upregulated in a wide variety of human solid and liquid tumors (1,2). As such, CTAs have garnered much attention as attractive targets for a variety of immunotherapy-based approaches to selectively attack tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cripto, also known as teratocarcinoma derived growth factor 1 (TDGF-1), belongs to the EGF-CFC family of proteins. Members of this family are characterized by an N-terminal signal peptide, a conserved cysteine rich domain (CFC motif), and a short hydrophobic carboxy-terminal tail that contains GPI cleavage and attachment sites. The GPI moiety anchors Cripto and family members to the extracellular plasma membrane (1). An O-linked fucosylation site within the EGF-like motif is required for Cripto and related family members to perform their function as co-receptors for TGF-β-related ligands such as Nodal and Vg1/GDF1 (2,3). Soluble forms of Cripto can be produced - these contain intact EGF and CFC domains, and are thought to have paracrine activities, as opposed to the autocrine activity of Cripto functioning as a coreceptor (4). Understanding of this paracrine activity is not complete, but it is proposed that Cripto may act as co-ligand for Nodal (3).Cripto is an important modulator of embryogenesis and oncogenesis (4). It is highly expressed in early embryos, and in embryonic stem (ES) cells where it is involved in cardiomyocytic differentiation and acts as a negative regulator of neurogenesis (5-7). Transient activation of Cripto is essential for the capacity of stem cell self-renewal and pluripotency in ES cells, and in some adult derived stem cells (8). Signaling through Cripto can also stimulate other activities that promote tumorigenesis such as stimulation of proliferation, cell motility, invasion, angiogenesis and epithelial-mesenchymal transition (EMT) (9-11). Cripto is highly expressed in a broad range of tumors, where it acts as a potent oncogene.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Nerve growth factor (NGF) is a small, secreted protein and member of the neurotrophin family of growth factors that promote neuronal cell survival and differentiation (1). Producing cells release NGF that bind and activate TrkA high affinity receptors to mediate NGF-driven signaling. NGF also binds to a low affinity p75 (NTR) receptors, which belong to the death receptor family (2). Although NGF has been classically described as favoring neuron survival and differentiation, nerve growth factor can promote apoptosis in cells that contain p75 (NTR) and lack TrkA. NGF can induce neuron death in a variety of neurodegenerative conditions, including Alzheimer disease (3). Besides its neurotrophic actions, NGF has an effect on non-neuronal cells and may help mediate inflammation, angiogenesis, and stimulate breast cancer cell growth (4-6). NGF signaling is looking increasingly promising as potential drug targets for diseases.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Integrins are α/β heterodimeric cell surface receptors that play a pivotal role in cell adhesion and migration, as well as in growth and survival (1,2). The integrin family contains at least 18 α and 8 β subunits that form 24 known integrins with distinct tissue distribution and overlapping ligand specificities (3). Integrins not only transmit signals to cells in response to the extracellular environment (outside-in signaling), but also sense intracellular cues to alter their interaction with extracellular environment (inside-out signaling) (1,2).Integrin β4 pairs with integrin α6 on the cell surface membrane to form the integrin α6β4 heterodimer, an important laminin receptor that is essential for hemidesmosome formation and the support of stable adhesions between basal epithelial cells and the basement membrane (4,5). Integrin β4 is an important component in several growth factor induced signaling pathways that are involved in tumorigenesis and invasive cell growth (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Leucine-rich repeat and immunoglobulin domain-containing protein (LINGO-1) is a potent negative modulator of neuronal processes including neuronal survival, axonal integrity, oligodendrocyte differentiation, and myelination (1-5). LINGO-1, Nogo receptor (NgR), and p75 neurotrophin receptor (p75NTR), or TNF receptor orphan Y (TROY) form a tripartite receptor complex, which activates RhoA/ROCK signaling and is responsible for the inhibition effect of myelin- associated factors (6,7). LINGO-1 is abundantly expressed in the brain and is implicated in various neurodegenerative disorders such as Essential tremor, multiple sclerosis and Parkinson’s disease (8-11). Recently, LINGO-1 was reported to bind directly to amyloid precursor protein (APP), promoting its degradation through lysosomal proteolysis (12). This research study implicated that Lingo-1 plays a critical role in the pathophysiology of Alzheimer's disease.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) is a multidomain guanine nucleotide exchange factor (GEF) protein that activates Rac1, a GTPase involved in cytoskeletal dynamics that regulate cell migration, growth and survival. TIAM1 also has been identified as an inhibitor of the YAP/TAZ signaling pathway, with two distinct subcellular mechanisms of action: (1) promoting cytoplasmic (proteosomal) degradation of YAP and TAZ; and (2) blocking the transcriptional co-activator functions of YAP and TAZ in the nucleus (3,4). The effects of TIAM1 on tumor development are also complex and context-dependent. For example, it has been reported that TIAM1 can promote tumor growth and progression in some contexts, while antagonizing tumor metastasis and invasion in other contexts (5,6).