Microsize antibodies for $99 | Learn More >>

Polyclonal Antibody Response to Lithium Ion

Also showing Polyclonal Antibody Western Blotting Response to Lithium Ion

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein tyrosine kinase Pyk2, also called CAKβ, RAFTK and CADTK, is a nonreceptor tyrosine kinase structurally related to focal adhesion kinase (FAK) (1-4). Pyk2 is predominantly expressed in cells derived from hematopoietic lineages and in the central nervous system. Pyk2 is one of the signaling mediators for the G-protein-coupled receptors and MAP kinase signaling pathway. It plays an important role in cell spreading and migration (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cyclooxygenase1 (Cox1) and cyclooxygenase2 (Cox2), family members with 60% homology in humans, catalyze prostaglandin production from arachidonic acid (1,2). While Cox1 expression is constitutive in most tissues, Cox2 expression is induced by lipopolysaccharide (LPS) and peptidoglycan (PGN) (3). PGN activates Ras, leading to phosphorylation of Raf at Ser338 and Erk1/2 at Tyr204. The activation of MAP kinase signaling results in subsequent activation of IKKα/β, phosphorylation of IκBα at Ser32/36, and NF-κB activation. Finally, activation of the transcription factor NF-κB is responsible for the induction of Cox2 expression (4). Investigators have shown that LPS and PGN induce the clinical manifestations of arthritis and bacterial infections, such as inflammation, fever, and septic shock (5). Research studies have indicated that Cox1 and Cox2 may also play a role in the neuropathology of Alzheimer's disease by potentiating γ-secretase activity and β-amyloid generation (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein tyrosine kinase Pyk2, also called CAKβ, RAFTK and CADTK, is a nonreceptor tyrosine kinase structurally related to focal adhesion kinase (FAK) (1-4). Pyk2 is predominantly expressed in cells derived from hematopoietic lineages and in the central nervous system. Pyk2 is one of the signaling mediators for the G-protein-coupled receptors and MAP kinase signaling pathway. It plays an important role in cell spreading and migration (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein tyrosine kinase Pyk2, also called CAKβ, RAFTK and CADTK, is a nonreceptor tyrosine kinase structurally related to focal adhesion kinase (FAK) (1-4). Pyk2 is predominantly expressed in cells derived from hematopoietic lineages and in the central nervous system. Pyk2 is one of the signaling mediators for the G-protein-coupled receptors and MAP kinase signaling pathway. It plays an important role in cell spreading and migration (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Insulin-like growth factor-binding proteins (IGFBPs) play an integral role in modifying insulin-like growth factor (IGF) actions in a wide variety of cell types. This family contains six members that are structurally related but encoded by distinct genes. IGFBPs have a high affinity for IGFs. Some members of the IGFBP family have been consistently shown to inhibit IGF actions by preventing them from gaining access to the IGF receptors, while others potentiate IGF actions by facilitating the ligand-receptor interaction (1-3). IGFBP2 is the second most abundant IGFBP in the circulation and is present in various other biological fluids and tissues of many vertebrate species. Serum IGFBP2 levels are elevated in conditions such as shock, fasting, hypoxemia or after traumata, suggesting complex regulation of IGFBP2 expression (4). IGFBP2 is overexpressed in many malignancies and is often correlated with an increasingly malignant status of the tumor, pointing to a potential involvement of IGFBP2 in tumorigenesis (5).