20% off purchase of 3 or more products* | Learn More >>

Polyclonal Antibody Western Blotting Anterior/Posterior Pattern Formation

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Adenomatous Polyposis Coli (APC) tumor suppressor gene is mutated in most familial and sporadic colorectal cancers and encodes a large cytoplasmic protein that is implicated in cell migration, cell adhesion, and proliferation (1). APC binds directly to microtubules and lack of APC leads to defective mitotic spindles and aneuploidy due to missegregation of chromosomes (2). APC is well characterized as a scaffolding protein, binds to β-catenin, and is involved in the regulation of its intracellular concentration. In the absence of a Wnt signal, GSK-3β phosphorylates all three members of the APC-β-catenin-axin complex and this phosphorylation of β-catenin creates a recognition site for ubiquitin, the signal for proteasome-mediated degradation. In the presence of a Wnt signal, dishevelled inactivates GSK-3β and β-catenin coordinates gene transcription of proteins important for the control of cell cycle progression and proliferation, such as cyclin D1 and c-Myc (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Pbxs (Pre-B cell leukemia transcription factors) belong to the Three Amino Acid Loop Extension (TALE) family of homeodomain containing protein (1). Pbx1 has two isoforms, Pbx1a and 1b, that are divergent in sequence at the carboxy terminus, which is a result of alternative mRNA splicing. Unlike other homeoselector genes that have restricted expression in development Pbx genes are ubiquitously expressed in both fetal and adult tissue (1). Human pre-B cell acute leukemias are frequently associated with a t(1;19)(q23;p13.3) translocation that results in a fusion between the E2A and Pbx1 genes (2,3). Pbx1 genes are not normally expressed in lymphoid tissues, and the E2A-Pbx1 fusion protein is a potent transcription factor that drives aberrant gene expression.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Homeobox protein Hox-D9 (HOXD9) is a sequence-specific transcription factor that is part of a developmental regulatory program that provides cells with specific positional identities on the anterior-posterior axis. HOXD9 is developmentally expressed in structures of either mesodermal or neuro-ectodermal origin, such as developing limbs, gonads, and the central nervous system (1-6). HOXD9 plays a critical role in regulation of limb development, neuronal development, and development of mammary glands and gonads in many organisms (1-6). The HOXD9 gene promoter is found to be hypermethylated and silenced in multiple types of cancer, including breast cancer, melanoma brain metastases, and cholangiocarcinomas (7-9). In addition, HOXD expression is increased in other types of cancer, including human glioblastomas and astrocytomas, where expression appears to drive growth of the tumors (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The aldehyde dehydrogenase family is a large group of enzymes that catalyze the oxidization of aldehydes into carboxylic acids (1). Aldehyde Dehydrogenase 1A2 (ALDH1A2, RALHD2) is among a group of aldehyde dehydrogenases that catalyze the metabolism of retinaldehyde into retinoic acid (RA), which plays a critically important signaling role in animal development (2). Research studies have shown that ALDH1A2 also plays a role postnatally in modulating the effects of RA signaling on immune cell function (3-5). In one example using a genetic mouse model, it was shown that ALDH1A2-dependent RA signaling was a downstream mediator of NOTCH-dependent T cell differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Huntington's Disease (HD) is a fatal neurodegenerative disorder characterized by psychiatric, cognitive, and motor dysfunction. Neuropathology of HD involves specific neuronal subpopulations: GABA-ergic neurons of the striatum and neurons within the cerebral cortex selectively degenerate (1,2). The genetic analysis of HD has been the flagship study of inherited neurological diseases from initial chromosomal localization to identification of the gene.Huntingtin is a large (340-350 kD) cytosolic protein that may be involved in a number of cellular functions such as transcription, gastrulation, neurogenesis, neurotransmission, axonal transport, neural positioning, and apoptosis (2,3). The HD gene from unaffected individuals contains between 6 and 34 CAG trinucleotide repeats, with expansion beyond this range causing the onset of disease symptoms. A strong inverse correlation exists between the age of onset in patients and the number of huntingtin gene CAG repeats encoding a stretch of polyglutamine peptides (1,2). The huntingtin protein undergoes numerous post-translational modifications including phosphorylation, ubiquitination, sumoylation, palmitoylation, and cleavage (2). Phosphorylation of Ser421 by Akt can partially counteract the toxicity that results from the expanded polyglutamine tract. Varying Akt expression in the brain correlates with regional differences in huntingtin protein phosphorylation; this pattern inversely correlates with the regions that are most affected by degeneration in diseased brain (2). A key step in the disease is the proteolytic cleavage of huntingtin protein into amino-terminal fragments that contain expanded glutamine repeats and translocate into the nucleus. Caspase mediated cleavage of huntingtin at Asp513 is associated with increased polyglutamine aggregate formation and toxicity. Phosphorylation of Ser434 by CDK5 protects against cleavage (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CrkL, a 39 kDa adaptor protein, has a key regulatory role in hematopoietic cells. CrkL has one SH2 and two SH3 domains, with 60% homology to CrkII (1). The amino-terminal SH3 domain of CrkL binds proteins such as C3G, SOS, PI3K, c-Abl and BCR/Abl. The SH2 domain of CrkL can bind to tyrosine-phosphorylated proteins such as Cbl, HEF1, CAS and paxillin (2,3). CrkL is involved in various signaling cascades initiated by different cytokines and growth factors. The biological outcomes of the Crk-activated signal transduction include the modulation of cell adhesion, cell migration and immune cell responses (4). CrkL is a prominent substrate of the BCR/Abl oncoprotein in chronic myelogenous leukemia and binds to both BCR/Abl and c-Abl (5). CrkL is prominently and constitutively tyrosine phosphorylated in CML neutrophils and is not phosphorylated in normal neutrophils. Moreover, stimulation of normal neutrophils with cytokines and agonists does not induce tyrosine phosphorylation of this protein (6), indicating that it may be a useful target for therapeutic intervention or as a disease marker. Tyr207 in CrkL is the BCR/Abl phosphorylation site (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: BMPR2 is a type II serine/threonine receptor kinase that binds to an array of secreted bone morphogenetic proteins (BMPs). BMPs belong to the superfamily of TGF-β ligands that modulate gastrulation, neurogenesis, chondrogenesis, interdigital cell death, and bone morphogenesis (1-5). In contrast to the TGF-β type II receptor, BMPR2 contains an extended carboxyl-terminal region that interacts with multiple signaling molecules to modulate the responsiveness of target genes to BMPs (6,7). BMP signaling requires oligomerization of both type I and type II receptors to elicit a functional response of target genes. BMP binding to type I and II receptors induces Smad1/5/8 phosphorylation which is required for the activation of target genes (7). In vitro and in vivo evidence suggests that defects in BMPR2 may contribute to pulmonary hypertension, inflammation, and endothelial injury (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ring1A plays a role in polycomb group (PcG) protein function. PcG proteins are critically involved in transcriptional repression of Hox genes during development (1,2). PcG proteins form two distinct complexes: EED-EZH2 and the PRC complex, which is composed of at least Bmi1 and Ring1A/Ring1B. The EZH2-containing complex is responsible for the methylation of H3K27, and the PRC complex ubiquitylates H2A. EZH2 methylation is required prior to PRC ubiquitylation, and both are essential for Hox gene repression (3). It has recently been shown that PcG proteins silence a group of developmentally important regulator genes, referred to as bivalent genes (4). This regulation may be responsible for the ability of stem cells to self renew or switch to differentiate into multipotent progenitors. Aberrant epigenetic silencing by PcG proteins is also thought to be important in tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Msh homeobox 1 (Msx1) is a Muscle Segment Homeobox (Msh) gene family member that acts as a transcriptional repressor during embryonic development, playing an important role in limb pattern formation, craniofacial development, and tooth development (1-3). Msx1 is expressed in the mesenchyme of the developing nail bed (2) and in fetal hair follicles, epidermis and fibroblasts; reduced expression is seen in adult epithelial-derived tissues (4). Msx1 acts in concert with the Wnt1 network to establish the midbrain dopaminergic progenator domain, a region that gives rise to neurons that are critical for normal brain function and are the cells affected in Parkinson disease (5). Mutation in the corresponding Msx1 gene correlates with abnormal tooth development in patients diagnosed with Wolf-Hirschhorn syndrome (6). Other genetic changes in the Msx1 gene result in Witkop Syndrome ("tooth and nail syndrome") and cases of abnormal tooth development associated with non-syndromic orofacial clefting (2,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Msh homeobox 1 (Msx1) is a Muscle Segment Homeobox (Msh) gene family member that acts as a transcriptional repressor during embryonic development, playing an important role in limb pattern formation, craniofacial development, and tooth development (1-3). Msx1 is expressed in the mesenchyme of the developing nail bed (2) and in fetal hair follicles, epidermis and fibroblasts; reduced expression is seen in adult epithelial-derived tissues (4). Msx1 acts in concert with the Wnt1 network to establish the midbrain dopaminergic progenator domain, a region that gives rise to neurons that are critical for normal brain function and are the cells affected in Parkinson disease (5). Mutation in the corresponding Msx1 gene correlates with abnormal tooth development in patients diagnosed with Wolf-Hirschhorn syndrome (6). Other genetic changes in the Msx1 gene result in Witkop Syndrome ("tooth and nail syndrome") and cases of abnormal tooth development associated with non-syndromic orofacial clefting (2,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Members of the homeodomain-interacting protein kinase (HIPK1-4) family of serine/threonine kinases regulate gene transcription with effects on cell proliferation, differentiation, and apoptosis (1-3). HIPK1-3 are nuclear proteins that were originally described as co-repressors for homeobox transcription factors (1). HIPK proteins can interact with and/or phosphorylate many transcriptional regulators (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: NeuroD is a member of the basic helix-loop-helix (bHLH) family of transcription factors. These proteins function by forming heterodimers with E-proteins and binding to the canonical E-box sequence CANNTG (1,2). Neuronal activity results in CaMKII-mediated phosphorylation of NeuroD at Ser336, which is necessary for formation and growth of dendrites (3,4). NeuroD is also phosphorylated at Ser274 though the results are context dependent as phosphorylation by Erk stimulates NeuroD activity in pancreatic β-cells while phosphorylation by GSK-3β inhibits NeuroD in neurons (3). NeuroD is crucially important in both the pancreas and developing nervous system, and plays a large role in the development of the inner ear and mammalian retina (3). Mice lacking NeuroD become severely diabetic and die shortly after birth due to defects in β-cell differentiation (2,3,5,6). The lack of NeuroD in the brain results in severe defects in development (5). Human mutations have been linked to a number of types of diabetes including type I diabetes mellitus and maturity-onset diabetes of the young (1,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).