20% off purchase of 3 or more products* | Learn More >>

siRNA Cadherin Binding

Also showing siRNA Transfection Alpha-Catenin Binding, siRNA Transfection Cadherin Binding, siRNA Alpha-Catenin Binding

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$262
3 nmol
300 µl
SignalSilence® γ-Catenin siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit γ-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: Also known as plakoglobin, γ-catenin is a member of the Armadillo family of signaling molecules, which includes β-catenin and the Drosophila protein armadillo (1). This family of proteins is involved in Wnt signaling, which is important in embryonic development and in tumorigenesis (2-3). Although the two vertebrate proteins β- and γ-catenin display sequence homology, γ-catenin likely plays a role distinct from that of β-catenin (1, 4-6). γ-catenin localizes to desmosomes and adherens junctions, both sites of intercellular adhesion, and interacts with the cytoplasmic domains of classical and desmosomal cadherins. Interaction of γ- or β-catenin with α-catenin, desmoplakin and other junction proteins provides a link between intercellular junctions and the actin and intermediate filament cytoskeleton. Maintenance and/or modification of this link is vital for control of cell adhesion and migration (1). γ-catenin is modified by phosphorylation, affecting both adhesion and β-catenin dependent transcription (7), and by and O-glycosylation, affecting adhesion (8). Recent evidence suggests that γ-catenin regulates desmosomal adhesion in response to growth factor stimulation (9).

$262
3 nmol
300 µl
SignalSilence® γ-Catenin siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit γ-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis
REACTIVITY
Mouse

Background: Also known as plakoglobin, γ-catenin is a member of the Armadillo family of signaling molecules, which includes β-catenin and the Drosophila protein armadillo (1). This family of proteins is involved in Wnt signaling, which is important in embryonic development and in tumorigenesis (2-3). Although the two vertebrate proteins β- and γ-catenin display sequence homology, γ-catenin likely plays a role distinct from that of β-catenin (1, 4-6). γ-catenin localizes to desmosomes and adherens junctions, both sites of intercellular adhesion, and interacts with the cytoplasmic domains of classical and desmosomal cadherins. Interaction of γ- or β-catenin with α-catenin, desmoplakin and other junction proteins provides a link between intercellular junctions and the actin and intermediate filament cytoskeleton. Maintenance and/or modification of this link is vital for control of cell adhesion and migration (1). γ-catenin is modified by phosphorylation, affecting both adhesion and β-catenin dependent transcription (7), and by and O-glycosylation, affecting adhesion (8). Recent evidence suggests that γ-catenin regulates desmosomal adhesion in response to growth factor stimulation (9).