20% off purchase of 3 or more products* | Learn More >>

siRNA Inhibition of Nf-Kappab Transcription Factor

Also showing siRNA Transfection Inhibition of Nf-Kappab Transcription Factor

$262
3 nmol
300 µl
SignalSilence® IκBα siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit IκBα expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state complexed with the inhibitory IκB proteins (1-3). Activation occurs via phosphorylation of IκBα at Ser32 and Ser36 followed by proteasome-mediated degradation that results in the release and nuclear translocation of active NF-κB (3-7). IκBα phosphorylation and resulting Rel-dependent transcription are activated by a highly diverse group of extracellular signals including inflammatory cytokines, growth factors, and chemokines. Kinases that phosphorylate IκB at these activating sites have been identified (8).

$262
3 nmol
300 µl
SignalSilence® SirT1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit SirT1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include acetylated p53 (2,3), p300 (4), Ku70 (5), forkhead (FoxO) transcription factors (5,6), PPARγ (7), and the PPARγ coactivator-1α (PGC-1α) protein (8). Deacetylation of p53 and FoxO transcription factors represses apoptosis and increases cell survival (2,3,5,6). Deacetylation of PPARγ and PGC-1α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (7,8). SirT1 deacetylase activity is inhibited by nicotinamide and activated by resveratrol. In addition, SirT1 activity may be regulated by phosphorylation, as it is phosphorylated at Ser27 and Ser47 in vivo; however, the function of these phosphorylation sites has not yet been determined (9).

$262
3 nmol
300 µl
SignalSilence® p16 INK4A siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p16 INK4A expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Cyclin-dependent kinases (CDKs) are activated in part by forming complexes with cyclins. For example, CDK4 and CDK6 associate with the D-type cyclins and phosphorylate the retinoblastoma protein. This phosphorylation is a necessary event for cells to enter S-phase (1). The inhibitors of CDK4 (INK4) family include p15 INK4B, p16 INK4A, p18 INK4C and p19 INK4D. p18 has been shown to function as a haploinsufficient tumor suppressor in vivo (2). All INK4 proteins are composed of 32 amino acid ankyrin motifs and selectively inhibit CDK4/6 activity. Mutational analyses of p18 implicate the third and the amino-terminal portion of the fourth ankyrin repeat in mediating binding to CDK4/6 (3). The interaction of INK4 family members can be a binary complex with CDK4/6 or ternary complex with cyclin D-bound CDK4/6 and ultimately results in the inhibition of cell cycle progression (4,5).

$262
3 nmol
300 µl
SignalSilence® OTULIN siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit OTULIN expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). Five subfamilies of DUBs have been characterized to date, and include USP, UCH, OTU, MJD, and JAMM deubiquitinating enzymes (1,2). The ovarian tumor (OTU) DUB subfamily comprises a group of approximately 100 putative cysteine proteases that are homologous to the Drosophila ovarian tumor gene product (3). OTU domain-containing deubiquitinase with linear linkage specificity (OTULIN, FAM105B, Gumby) is an OTU subfamily deubiquitinating enzyme that antagonizes the E3 linear ubiquitin chain assembly complex (LUBAC) by promoting disassembly of Met1-linked (linear) ubiquitin chains (4,5). LUBAC and OTULIN regulate NOD2 signaling in an antagonistic manner by controlling the level of Met1-ubiquitinated RIPK2 kinase (6). Binding of the OTULIN PUB-interacting motif to the HOIP subunit of LUBAC is critical for OTULIN inhibition of NF-κΒ signaling; this OTULIN-HOIP interaction is negatively regulated by tyrosine phosphorylation of OTULIN (7,8). The ability of OTULIN to influence LUBAC function and the presence of linear ubiquitin chains may play an important role in regulating angiogenesis, craniofacial, and neural development (5).

$262
3 nmol
300 µl
SignalSilence® β-Arrestin 1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-arrestin 1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Arrestin proteins function as negative regulators of G protein-coupled receptor (GPCR) signaling. Cognate ligand binding stimulates GPCR phosphorylation, which is followed by binding of arrestin to the phosphorylated GPCR and the eventual internalization of the receptor and desensitization of GPCR signaling (1). Four distinct mammalian arrestin proteins are known. Arrestin 1 (also known as S-arrestin) and arrestin 4 (X-arrestin) are localized to retinal rods and cones, respectively. Arrestin 2 (also known as β-arrestin 1) and arrestin 3 (β-arrestin 2) are ubiquitously expressed and bind to most GPCRs (2). β-arrestins function as adaptor and scaffold proteins and play important roles in other processes, such as recruiting c-Src family proteins to GPCRs in Erk activation pathways (3,4). β-arrestins are also involved in some receptor tyrosine kinase signaling pathways (5-8). Additional evidence suggests that β-arrestins translocate to the nucleus and help regulate transcription by binding transcriptional cofactors (9,10).