Microsize antibodies for $99 | Learn More >>

siRNA Tau Protein Binding

Also showing siRNA Transfection Tau Protein Binding

$262
3 nmol
300 µl
SignalSilence® BIN1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit BIN1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Bridging integrator 1 (BIN1, AMPHL) is an adaptor protein and putative tumor suppressor expressed as multiple isoforms due to alternative splicing. The BIN1 protein was originally identified as a Myc box-interacting protein with structural similarity to the synaptic vesicle protein amphiphysin (1). BIN1 protein structure contains an amino-terminal amphipathic helix and a BAR domain that is involved in sensing membrane curvature. The protein also includes a Myc-binding domain and a SH3 domain, which are implicated in protein-protein interactions (1). Multiple BIN1 isoforms range in size from approximately 45 to 65 kDa, with the nuclear BIN1 isoform found mostly in skeletal muscle and the cytoplasmic IIA isoform expressed in axon initial segments and nodes of Ranvier of the brain (2,3). Corresponding BIN1 gene mutations and incorrect splicing can lead to impaired BIN1 membrane-tabulating and protein binding activities, resulting in development of autosomal recessive centronuclear myopathy and myotonic dystrophy (4,5). Genome-wide association studies link the BIN1 gene with late onset Alzheimer disease (AD) and increased BIN1 mRNA expression is seen in AD brains (6,7).

$262
50-100 transfections
300 µl
SignalSilence® GSK-3α/β siRNA from Cell Signaling Technology allows the researcher to specifically inhibit GSK-3aα and GSK-3bβ expression using RNA interference, a method in which gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human

Background: Glycogen synthase kinase-3 (GSK-3) was initially identified as an enzyme that regulates glycogen synthesis in response to insulin (1). GSK-3 is a ubiquitously expressed serine/threonine protein kinase that phosphorylates and inactivates glycogen synthase. GSK-3 is a critical downstream element of the PI3K/Akt cell survival pathway whose activity can be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of GSK-3β (2,3). GSK-3 has been implicated in the regulation of cell fate in Dictyostelium and is a component of the Wnt signaling pathway required for Drosophila, Xenopus, and mammalian development (4). GSK-3 has been shown to regulate cyclin D1 proteolysis and subcellular localization (5).

$262
50-100 transfections
300 µl
SignalSilence® GSK-3α siRNA I from Cell Signaling Technology allows the researcher to specifically inhibit GSK-3α expression using RNA interference, a method in which gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human, Monkey

Background: Glycogen synthase kinase-3 (GSK-3) was initially identified as an enzyme that regulates glycogen synthesis in response to insulin (1). GSK-3 is a ubiquitously expressed serine/threonine protein kinase that phosphorylates and inactivates glycogen synthase. GSK-3 is a critical downstream element of the PI3K/Akt cell survival pathway whose activity can be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of GSK-3β (2,3). GSK-3 has been implicated in the regulation of cell fate in Dictyostelium and is a component of the Wnt signaling pathway required for Drosophila, Xenopus, and mammalian development (4). GSK-3 has been shown to regulate cyclin D1 proteolysis and subcellular localization (5).